A: A troche is a small lozenge designed to dissolve in the mouth. Testosterone is available in troche or buccal form. If you are referring to testosterone troche, this product is generally used to treat conditions in men that result from a lack of natural testosterone. Testosterone is vital to maintaining an active and healthy male sex drive. Testosterone deficiency can cause erectile dysfunction. Studies suggest that if erectile dysfunction is associated with a low testosterone level, it can often be treated with prescription testosterone pills. Based on your complete medical history and blood levels of testosterone, your doctor can determine the best treatment option to meet your needs. For more information, please consult with your health care provider and visit //www.everydayhealth.com/drugs/testosterone. Michelle McDermott, PharmD

Vitamin C (unnecessary). I don’t know where I first heard about vitamin C’s supposed T-boosting benefits, but it’s one of those things you see all over the internet when you Google “how to increase testosterone.” Without trying to find the research that backs up that claim, I took a vitamin C supplement during my experiment. I later found some research that suggests that vitamin C does increase testosterone levels in diabetic mice, but because I wasn’t diabetic (nor a mouse), I’m not sure how much the vitamin C helped. I’ve actually stopped taking vitamin C supplements. I’m likely getting more than enough with my diet. Unless you have diabetes, you probably won’t see much benefit from this supplement. Don’t waste your money.
The testosterone supplements are primarily used to enhance the body muscle mass. Various studies have shown that testosterone therapy is also crucial in development of the memory as well as concentration, increase the level of energy, and increase libido or sexual desire. However, use of high levels of testosterone booster can also contribute to the development of certain medical conditions and health problems. Two types are available on the market, legal boosters, and illegal boosters. There are also certain excellent natural testosterone boosters that are efficient and so not have side effects.
You can find a whole bunch of HIIT workouts online, but the one I used during my 90-day experiment was a simple wind sprint routine. On Tuesdays I went to the football field near my house, marked off 40 yards with some cones, and sprinted as fast as I could. I’d slowly walk back to the starting line, giving my body about a minute to rest, and then I’d sprint again. I typically did 40 sets of 40-yard sprints in a workout. I love sprints.
Stored food in glassware and never, ever, ever heated food in plastic containers. Most modern plastics contain phthalates. Phthalates are what give plastic their flexibility, durability, and longevity. But they also screw with hormones by imitating estrogen. Because I didn’t want any of those T-draining molecules in my food, I kept all my food in glassware. I also made sure to never heat food in plastic containers, as heat increases the transfer of phthalates into food.
During the second trimester, androgen level is associated with sex formation.[13] This period affects the femininization or masculinization of the fetus and can be a better predictor of feminine or masculine behaviours such as sex typed behaviour than an adult's own levels. A mother's testosterone level during pregnancy is correlated with her daughter's sex-typical behavior as an adult, and the correlation is even stronger than with the daughter's own adult testosterone level.[14]

"A lot of the symptoms are mirrored by other medical problems," Hedges says. "And for a long time, we were not attributing them to low testosterone, but to diabetes, depression, high blood pressure, and coronary artery disease. But awareness and appreciation of low testosterone has risen. We recognize now that low testosterone may be at the root of problems."


Many clinical studies have looked at the effect of testosterone treatment on body composition in hypogonadal men or men with borderline low testosterone levels. Some of these studies specifically examine these changes in older men (Tenover 1992; Morley et al 1993; Urban et al 1995; Sih et al 1997; Snyder et al 1999; Kenny et al 2001; Ferrando et al 2002; Steidle et al 2003; Page et al 2005). The data from studies, on patients from all age groups, are consistent in showing an increase in fat free mass and decrease in fat mass or visceral adiposity with testosterone treatment. A recent meta-analysis of 16 randomized controlled trials of testosterone treatment effects on body composition confirms this pattern (Isidori et al 2005). There have been less consistent results with regard to the effects of testosterone treatment of muscle strength. Some studies have shown an increase in muscle strength (Ferrando et al 2002; Page et al 2005) with testosterone whilst others have not (Snyder et al 1999). Within the same trial some muscle group strengths may improve whilst others do not (Ly et al 2001). It is likely that the differences are partly due to the methodological variations in assessing strength, but it also possible that testosterone has different effects on the various muscle groups. The meta-analysis found trends toward significant improvements in dominant knee and hand grip strength only (Isidori et al 2005).
There is a negative correlation of testosterone levels with plasminogen activator inhibitor-1 (PAI-1) (Glueck et al 1993; Phillips 1993), which is a major prothrombotic factor and known to be associated with progression of atherosclerosis, as well as other prothrombotic factors fibrinogen, α2-antiplasmin and factor VII (Bonithon-Kopp et al 1988; Glueck et al 1993; Phillips 1993; De Pergola et al 1997). There is a positive correlation with tissue plasminogen activator (tPA) which is one of the major fibrinolytic agents (Glueck et al 1993). Interventional trials have shown a neutral effect of physiological testosterone replacement on the major clotting factors (Smith et al 2005) but supraphysiological androgen administration can produce a temporary mild pro-coagulant effect (Anderson et al 1995).

^ Jump up to: a b Sapienza P, Zingales L, Maestripieri D (September 2009). "Gender differences in financial risk aversion and career choices are affected by testosterone". Proceedings of the National Academy of Sciences of the United States of America. 106 (36): 15268–73. Bibcode:2009PNAS..10615268S. doi:10.1073/pnas.0907352106. PMC 2741240. PMID 19706398.
Carbs play a big part in determining your Testosterone levels. Let's start with what to avoid. First, research shows that a large serving of sugar (75g of glucose), decreased Testosterone levels by as much as 25%! (25 & 26). I know this is a pretty extreme dosage, but you may want to avoid massive servings of sugar! Also, men who have Metabolic syndrome have lower Testosterone levels (27). Metabolic syndrome is often brought about by chronic high blood sugar which leads to insulin resistance.
ZMA (unnecessary). So when I researched how to increase testosterone, a supplement called ZMA kept popping up. It’s a blend of zinc, magnesium, and vitamin B6. The purported benefits of ZMA include better and deeper sleep which indirectly is supposed to increase testosterone. Zinc and magnesium are necessary minerals in testosterone production, so a mega-dose should be useful, right? Well, no. I bought some and took it during the duration of experiment. I should have done some more research before I made the purchase. While one study in 1998 showed increased strength among athletes taking ZMA, two recent studies (study 1, study 2) have shown that it has absolutely no effect on total or free testosterone levels. Crap. My advice, unless you have a zinc and magnesium deficiency, no need to waste your money on this.
Zinc is little more of a nice-to-have ingredient than a must-have. It’s on our radar as an ingredient that possibly boosts testosterone levels, and while we couldn’t find enough supporting evidence that taking zinc would increase natural testosterone, low zinc levels have been connected to infertility. A low zinc level is also possibly a sign of hypogonadism. The closest support we found is in a study which found that people recovered from nutritional deficiency-related problems more quickly if they took a zinc supplement than those who did not. Zinc is available in many foods, such as oysters, fortified breakfast cereals, and red meat.
A lifelong habit of learning and engaging in mentally challenging activities seems to keep the brain in shape. Intellectual enrichment and learning stimulate the brain to make more connections, increasing the density of nerve-to-nerve connections. That means the "educated brain" may possess a deeper well of connections and be able to withstand more damage to the brain from a small stroke without causing loss of memory or thinking skills.
Anabolic–androgenic steroids (AASs) are synthetic derivatives of testosterone that are commonly used among athletes aged 18–40 years, but many reports have demonstrated the presence of numerous toxic and hormonal effects as a result of long-term use of an AAS.[9] Testosterone-foods act as natural libido boosters. Due to the growing interest in herbal ingredients and other dietary supplements worldwide, the use of testosterone boosters is becoming more and more mainstream among athletes, but several side effects were documented. Hence, this study established to help in the assessment of the side effects and health risks which could occur among athletes consuming testosterone boosters.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
The diagnosis of late-onset hypogonadism requires the combination of low serum testosterone levels with symptoms of hypogonadism. Questionnaires are available which check for the symptoms of hypogonadism. These have been validated for the assessment of aging patients with hypogonadism (Morley et al 2000; Moore et al 2004) but have a low specificity. In view of the overlap in symptoms between hypogonadism, aging and other medical conditions it is wise to use a formal method of symptom assessment which can be used to monitor the effects of testosterone replacement.
During the month before my experiment, I was definitely sleep deprived. Some nights I was only getting 4 to 5 hours. Testosterone killer! During my experiment I tried to get 8 to 9 hours of sleep at night as consistently as possible. I had to go to bed earlier, but I was only cutting into time that I would have been using to mindlessly surf the net anyway.
This being my initial use of product I do find an overall improvement in mind and body "maleness" related to focused goal and strength improvements. Has it turned me into a super stud..no, but at a recent 60th birthday, increased desire has added to performance and that is what I was looking for.I have reinstated diet and exercise that also has made physical and mental health achievements Will finish current bottle, and evaluate overall products worth once completed. Further evaluation pending...
Currently available testosterone preparations in common use include intramuscular injections, subcutaneous pellets, buccal tablets, transdermal gels and patches (see Table 2). Oral testosterone is not widely used. Unmodified testosterone taken orally is largely subject to first-pass metabolism by the liver. Oral doses 100 fold greater than physiological testosterone production can be given to achieve adequate serum levels. Methyl testosterone esters have been associated with hepatotoxicity. There has been some use of testosterone undecanoate, which is an esterified derivative of testosterone that is absorbed via the lymphatic system and bypasses the liver. Unfortunately, it produces unpredictable testosterone levels and increases testosterone levels for only a short period after each oral dose (Schurmeyer et al 1983).
Cognitive abilities differ between males and females and these differences are present from childhood. In broad terms, girls have stronger verbal skills than boys who tend to have stronger skills related to spatial ability (Linn and Petersen 1985). It is thought that the actions of sex hormones have a role in these differences. Reviewing different cognitive strengths of male versus female humans is not within the scope of this article but the idea that cognition could be altered by testosterone deserves attention.
Insulin causes lower Testosterone levels, so go easy on the carbs and eat more protein right? Well you need to be careful with protein consumption – Excess protein without fat can also cause insulin spikes. So go easy on that chicken breast with a side of egg white omelets washed down with a protein shake. From an insulin point of view you may as well drink a can of soda with some aminos acid! So what should you do? Eat more fat.
If you want to naturally boost testosterone and HGH then combining weight training with HIIT workouts (high intensity interval training). Go to the gym at least three days a week, ideally at least three days a week, and lift heavy weights. Lifting heavy weights 6–12 reps with larger muscle groups like your quadriceps, hamstrings, back, shoulders and chest will help your body pack on the maximum amount of muscle. Specifically, lifting at least 30 minutes up to as long as an hour or so can be very, very beneficial boost low testosterone levels.
I highly recommend using a great essential amino acid mix post-exercise in order to boost testosterone.  These essential amino acids and especially the concentrated branched chain amino acids leucine, isoleucine and valine stimulate muscle protein synthesis.  Getting these amino acids in the post-workout window dramatically boosts testosterone production (14).  I like using our Amino Strong and will often recommend a scoop pre-workout and post-workout for the best muscle building, testosterone boosting benefits.
Using steroids eventually trains your body to realize that it doesn’t have to produce as much testosterone to reach its equilibrium, so to reach the same highs you’ll need to take more steroids, and when you stop taking them, your body will need to readjust — you’ll be living with low testosterone for a while (and you’ll need to see a doctor if your body doesn’t readjust on its own). Forcing your body to stay above your natural testosterone, even if you’re naturally low, can create this kind of dependency which ultimately decreases the amount of testosterone your body will produce on its own.
It is hard to know how many men among us have TD, although data suggest that overall about 2.1% (about 2 men in every 100) may have TD. As few as 1% of younger men may have TD, while as many as 50% of men over 80 years old may have TD. People who study the condition often use different cut-off points for the numbers, so you may hear different numbers being stated.
Finally, we looked at the proprietary blends of our remaining boosters, and dug into their ingredient lists. Supplements frequently include ingredients known for their “folk-lore” value; they’re believed to work, even when there isn’t any scientific background to prove it. Though we didn’t ding points if an ingredient wasn’t proven to be good (just so long as it wasn’t proven to be bad), we didn’t want to include any ingredient with evidence of causing harm.
While it would be nice to buy a testosterone pill from the local supplement store and have your testosterone levels go up, such a magic pill does not exist. As you can see from the above rundown, while a few supplements may be somewhat effective if your T levels are already low, none will significantly raise your testosterone above a baseline level. Thus, the basics of keeping your T levels high remain pretty simple:
Nutritional developers formulated Nugenix® with Testofen®, a key natural ingredient to help boost “free” testosterone along with resistance training. This key ingredient is carefully extracted from the fenugreek plant. A Testofen® study in Irvine, California indicated positive free testosterone-related results. Nugenix also includes L-Citrulline Malate, Tribulus, Zinc, plus Vitamins B6 and B12 to help promote overall health and performance.*
Two of the immediate metabolites of testosterone, 5α-DHT and estradiol, are biologically important and can be formed both in the liver and in extrahepatic tissues.[151] Approximately 5 to 7% of testosterone is converted by 5α-reductase into 5α-DHT, with circulating levels of 5α-DHT about 10% of those of testosterone, and approximately 0.3% of testosterone is converted into estradiol by aromatase.[2][151][157][158] 5α-Reductase is highly expressed in the male reproductive organs (including the prostate gland, seminal vesicles, and epididymides),[159] skin, hair follicles, and brain[160] and aromatase is highly expressed in adipose tissue, bone, and the brain.[161][162] As much as 90% of testosterone is converted into 5α-DHT in so-called androgenic tissues with high 5α-reductase expression,[152] and due to the several-fold greater potency of 5α-DHT as an AR agonist relative to testosterone,[163] it has been estimated that the effects of testosterone are potentiated 2- to 3-fold in such tissues.[164]
Sleep apnea is another frequently listed contraindication to testosterone treatment. There have been a few reports of the development, or worsening, of sleep apnea during testosterone therapy (Matsumoto et al 1985) but sleep apnea is actually associated with lower serum testosterone levels (Luboshitzky et al 2002). The reduction in fat mass during treatment with testosterone could potentially be beneficial for sleep apnea, so many specialists will still consider patients for treatment with appropriate monitoring. It is wise to take a clinical history for sleep apnea during testosterone treatment in all men and perform sleep studies in those who develop symptoms.
Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.
The hypogonadal-obesity-adipocytokine cycle hypothesis. Adipose tissue contains the enzyme aromatase which metabolises testosterone to oestrogen. This results in reduced testosterone levels, which increase the action of lipoprotein lipase and increase fat mass, thus increasing aromatisation of testosterone and completing the cycle. Visceral fat also promotes lower testosterone levels by reducing pituitary LH pulse amplitude via leptin and/or other factors. In vitro studies have shown that leptin also inhibits testosterone production directly at the testes. Visceral adiposity could also provide the link between testosterone and insulin resistance (Jones 2007).
You should also get rid of cleaning products loaded with chemicals, artificial air fresheners, dryer sheets, fabric softeners, vinyl shower curtains, chemical-laden shampoos, and personal hygiene products. Replace them all with natural, toxin-free alternatives. Adjusting your diet can also help, since many processed foods contain gender-bending toxins. Switch to organic foods, which are cultivated without chemical interventions.
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).

Tailor the above recommendations to your personal needs and lifestyle. If you’re a vegetarian drop the bacon and steak, but keep the whey protein and eggs. If you have an injury that prevents you from heavy weightlifting, move as much as you can in the way that you can. There are no studies out there which can tell you exactly what will happen if you do X and Y, but not Z. And I certainly can’t tell you either. Don’t be afraid of self-education – that’s how I learned all this – and embrace the idea of conducting your own experiment and being your own test subject. Incorporate as many of the recommendations above as you’re comfortable with, consult your doctor, and track your results.
While I do have a pretty manly mustache, I’m not a doctor or a medical expert. I’m a guy with a law degree he’s never used who blogs about manliness. What I’m about to share shouldn’t be taken as a substitute for qualified medical expertise. It’s simply my experience and views on the subject. Before you make any changes in lifestyle or diet, talk to your doctor or healthcare provider. Be smart.
While it would be nice to buy a testosterone pill from the local supplement store and have your testosterone levels go up, such a magic pill does not exist. As you can see from the above rundown, while a few supplements may be somewhat effective if your T levels are already low, none will significantly raise your testosterone above a baseline level. Thus, the basics of keeping your T levels high remain pretty simple:
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
Before the ready availability of non-injectible testosterone preparations, and because of their ease of administration by the oral route, 17-alkylated steroids were popular surrogate agents for testosterone. These substances, however, were capable of inducing several risk factors for coronary artery disease (Kopera 1993; Hall and Hall 2005) and as a consequence, particularly after the revelations of extensive 17-alkylated anabolic steroid abuse by athletes, testosterone, became unjustly incriminated. The evidence, however, tends to suggest just the opposite; testosterone may even be cardioprotective. Dunajska and colleagues have demonstrated that when compared to controls, men with coronary artery disease tend to have: lower total testosterone levels and free androgen indices, more abdominal fat, higher blood sugar and insulin levels (Dunajska et al 2004).

Studies conducted in rats have indicated that their degree of sexual arousal is sensitive to reductions in testosterone. When testosterone-deprived rats were given medium levels of testosterone, their sexual behaviors (copulation, partner preference, etc.) resumed, but not when given low amounts of the same hormone. Therefore, these mammals may provide a model for studying clinical populations among humans suffering from sexual arousal deficits such as hypoactive sexual desire disorder.[37]
Epidemiological evidence supports a link between testosterone and glucose metabolism. Studies in non-diabetic men have found an inverse correlation of total or free testosterone with glucose and insulin levels (Simon et al 1992; Haffner et al 1994) and studies show lower testosterone levels in patients with the metabolic syndrome (Laaksonen et al 2003; Muller et al 2005; Kupelian et al 2006) or diabetes (Barrett-Connor 1992; Andersson et al 1994; Rhoden et al 2005). A study of patients with type 2 diabetes using measurement of serum free testosterone by the gold standard method of equilibrium dialysis, found a 33% prevalence of biochemical hypogonadism (Dhindsa et al 2004). The Barnsley study demonstrated a high prevalence of clinical and biochemical hypogonadism with 19% having total testosterone levels below 8 nmol/l and a further 25% between 8–12 nmol/l (Kapoor, Aldred et al 2007). There are also a number longitudinal studies linking low serum testosterone levels to the future development of the metabolic syndrome (Laaksonen et al 2004) or type 2 diabetes (Haffner et al 1996; Tibblin et al 1996; Stellato et al 2000; Oh et al 2002; Laaksonen et al 2004), indicating a possible role of hypogonadism in the pathogenesis of type 2 diabetes in men. Alternatively, it has been postulated that obesity may be the common link between low testosterone levels and insulin resistance, diabetes and cardiovascular disease (Phillips et al 2003; Kapoor et al 2005). With regard to this hypothesis, study findings vary as to whether the association of testosterone with diabetes occurs independently of obesity (Haffner et al 1996; Laaksonen et al 2003; Rhoden et al 2005).
Thus, alcohol metabolism destroys the essential coenzyme required for T synthesis. Alcohol also contributes to the release of special endorphins which inhibit hormone production. In addition, drinking too much alcohol leads to the elevation of estrogen levels in men because of the conversion of testosterone in estrogen. It means that T levels come down with a run.
Another recent development is the production of adhesive tablets which are applied twice daily to the buccal mucosa on the gum above the incisor teeth. The tablets gradually release testosterone into the systemic venous circulation and steady state physiological concentrations are achieved in most patients within two days (Ross et al 2004). Some patients do not like the feeling of the tablet in the mouth or find that there is an abnormal taste in the mouth, but local adverse effects are usually mild and transient (Wang, Swerdloff et al 2004).
Most studies support a link between adult criminality and testosterone, although the relationship is modest if examined separately for each sex. Nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have also found testosterone to be associated with behaviors or personality traits linked with criminality such as antisocial behavior and alcoholism. Many studies have also been done on the relationship between more general aggressive behavior/feelings and testosterone. About half the studies have found a relationship and about half no relationship.[66]

Aromatase inhibitors can boost testosterone on their own, but they can also complement other testosterone boosters. If you take a supplement that increases testosterone without inhibiting the aromatase enzyme (through hypothalamic stimulation, for instance), you may find yourself with more estradiol than you need, a situation that taking an aromatase inhibitor may remedy.
"A lot of the symptoms are mirrored by other medical problems," Hedges says. "And for a long time, we were not attributing them to low testosterone, but to diabetes, depression, high blood pressure, and coronary artery disease. But awareness and appreciation of low testosterone has risen. We recognize now that low testosterone may be at the root of problems."
×