Pine Pollen is an androgen, meaning in theory it can raise testosterone levels – effectively making it a naturally derived source of testosterone. Read more about this on the links below. But like I said I started taking it for a few weeks and did notice a bit more ‘up and go’ so to speak, but it did only last a few weeks. I have tried cycling it but haven’t noticed the same effects as I had when I initially started with it. I’m still experimenting and will keep this page updated. Therefore I recommend doing your own research.
In summary, low testosterone levels are linked to the presence of numerous cardiovascular risk factors. Testosterone treatment acts to improve some of these factors, but effects may vary according to pre- and post-treatment testosterone levels, as well as other factors. There is little data from trials specific to aging males. Appropriately-powered randomized controlled trials, with cardiovascular disease primary endpoints, are needed to clarify the situation, but in the meantime the balance of evidence is that testosterone has either neutral or beneficial effects on the risk of cardiovascular disease in men. It is particularly important to define the effect of testosterone treatment on cardiovascular disease in view of its potential use as an anti-anginal agent.
Testosterone boosters are used by many athletes worldwide to achieve a significant muscle mass increase within a short period of time.[1] However; one cannot be completely confident in terms of the quality and efficacy of such products because of several reasons, such as the possibility of bad storage conditions and originating from an unreliable source. Over the years, some consumers of testosterone boosters have complained of kidney and liver abnormalities that could be linked to their use of boosters.[10] Cases of erroneous product administration have occurred in the past as athletes may not follow the instructions on the label fully, which can lead to many side effects.[11] In the present case, a man was admitted to a hospital because of a severe abdominal pain. The pain was later found to be caused by liver injury. The diagnosis confirmed that the levels of the key hepatic enzymes were markedly elevated. The medical complications observed were found to have occurred following the consumption of two courses of a commercial testosterone booster. According to researchers based in the US, about 13% of the annual cases of acute liver failure are attributable to idiosyncratic drug- and/or supplement-induced liver injury.[12] Marked increase in the levels of ALT, AST, and gamma-glutamyl transferase was observed after consuming the first course of the commercial testosterone booster, and they started to decline after the 2nd and 3rd course. This abruptly increases the levels of liver enzymes after the first course may be attributed to the interruption effect of commercial testosterone booster on liver function as a result of the effects of its ingredients.

In 1927, the University of Chicago's Professor of Physiologic Chemistry, Fred C. Koch, established easy access to a large source of bovine testicles — the Chicago stockyards — and recruited students willing to endure the tedious work of extracting their isolates. In that year, Koch and his student, Lemuel McGee, derived 20 mg of a substance from a supply of 40 pounds of bovine testicles that, when administered to castrated roosters, pigs and rats, remasculinized them.[179] The group of Ernst Laqueur at the University of Amsterdam purified testosterone from bovine testicles in a similar manner in 1934, but isolation of the hormone from animal tissues in amounts permitting serious study in humans was not feasible until three European pharmaceutical giants—Schering (Berlin, Germany), Organon (Oss, Netherlands) and Ciba (Basel, Switzerland)—began full-scale steroid research and development programs in the 1930s.
Michael T. Murray, ND, is widely regarded as one of the leading authorities on natural medicine. He is the author of many books, including the classic Encyclopedia of Nutritional Supplements. His latest book is What the Drug Companies Won’t Tell You and Your Doctor Doesn’t Know. Visit him online at   Article Courtesy of Better Nutrition  
Testosterone functions within the brain. There are several lines of evidence for this: there are androgen receptors within the brain; testosterone is converted to both dihydrotestosterone (DHT) and estradiol by the actions of 5-α-reductase and aromatase respectively in the brain; steroid hormones promote neuronal cell growth and survival (Azad et al 2003). Testosterone enhances cerebral perfusion in hypogonadal men and that perfusion takes place specifically in Brodman areas 8 and 24, regions of the brain that are concerned with: strategic planning, higher motor action, cognitive behaviors, emotional behavior, generalized emotional reaction, wakefulness and memory (Greenlee 2000; Azad et al 2003). Studies of cognition demonstrate that older men with higher levels of free testosterone index (a surrogate measure of bioavailable testosterone) have better scores in tests of: visual memory, verbal memory, visuospatial functions and visuomotor scanning. Hypogonadal men have lower scores in tests of memory, visuospatial function, with a faster decline in visual memory (Moffat et al 2002). In a very small, short term placebo-controlled study hypogonadal men with Alzheimer’s Disease (AD) treated with testosterone demonstrated a modest improvement in a cognition assessment score in AD (Tan and Pu 2003).
The most common "out of balance" testosterone levels are found to be on the low side of normal; this occurs because a male's highest testosterone level usually peaks at about age 20, and then it decreases slowly with age. It has been suggested that a 1% decrease in testosterone level per year is not unusual for middle-aged (30 to 50 years old) and older males. While this decrease may not be noticeable in some men, others may experience significant changes starting in their middle-aged years or more commonly at age 60 and above. This drop in testosterone levels is sometimes termed hypogonadism, "male menopause" or andropause.
Beast Sports Nutrition - Super Test has all four of our dream ingredients: magnesium, fenugreek, longjack, and zinc. These ingredients have all been demonstrated to help increase natural testosterone levels, with plenty of scientific research to support them (done on humans too, and not just rats). By combining all four ingredients, Super Test has the best chance of helping to increase your testosterone levels, and thereby helping you gain muscle or have a more active sex life.
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).

Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).

Both men and women with Alzheimer’s Disease were found to have an increased concentration of SHBG and decreased free androgen index when compared with controls (Paoletti et al 2004). In a prospective study of 574 men whose baseline age span was 32–87 years and who were followed for a mean of 19.1 years (range, 4–37), the risk of developing Alzheimers’ Disease decreased 26 percent for each 10 unit increase in free testosterone index. The authors concluded that testosterone may be important for the prevention and treatment of AD (Moffat et al 2004).

Testosterone makes a contribution to nitric oxide formation. Nitric oxide, released from penile nerves stimulates guanylate cyclase which catalyzes the transformation of guanosine-5-triphosphate into 3′,5′-cyclic, guanosine monophosphate (cyclic GMP). Gyclic GMP causes vasodilatation and hence erection formation (Morelli et al 2005). The breakdown of cyclic GMP to GMP is mediated by the enzyme, phosphodiesterase type-5, the inhibitors of which (eg, sildenafil citrate) enhance erection formation and maintanence (Carson and Lue 2005).
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
"The Journal of Clinical Endocrinology and Metabolism" published that males who switched from a high-fat diet to a low-fat diet also saw a decrease in their testosterone levels. If you want to put some fat back into your diet without fearing cardiac implications, plant-based saturated fat like coconut is just the ticket. Meat-based fat is also acceptable if kept to less than 10% of your dietary fat intake.
Nutritional developers formulated Nugenix® with Testofen®, a key natural ingredient to help boost “free” testosterone along with resistance training. This key ingredient is carefully extracted from the fenugreek plant. A Testofen® study in Irvine, California indicated positive free testosterone-related results. Nugenix also includes L-Citrulline Malate, Tribulus, Zinc, plus Vitamins B6 and B12 to help promote overall health and performance.*
The biggest change I made to my diet was increasing my fat and cholesterol intake. There’s a reason why old school strong men would drink raw eggs — studies have suggested that higher fat and cholesterol consumption results in increased levels of total T; men eating low-fat diets typically have decreased testosterone levels. The emphasis on increasing fat and cholesterol consumption meant I got to eat like Ron Swanson for three months — bacon and eggs and steak was pretty much the staple of my diet.
Testosterone is an anabolic steroid hormone that plays a critical role in metabolism, sex drive, muscle building, mood regulation, memory & cognitive function.  Normal testosterone levels play a huge role in maintaining optimal weight as well as reducing risk of degenerative diseases such as osteoporosis, heart disease, diabetes, & certain cancers (1, 2, 3).

Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).
A: If a health insurance company is providing coverage for a medication, including testosterone replacement therapy, they determine the final cost of the product. Costs will vary from one health insurance plan to another. To determine the costs of the testosterone replacement options, the health insurance plan should be contacted. There are various options for testosterone replacement therapy including gels, injections, patches, and tablets that dissolve under the lip. All of the formulations can be effective and each has advantages and disadvantages. The most appropriate testosterone replacement therapy depends on a variety of factors, including cost, patient preference, and tolerability. Testosterone replacement gels, such as AndroGel and Testim, are very effective and easy to administer. AndroGel and Testim can be easily applied to the skin once daily. However, the gels can be irritating to the skin and AndroGel and Testim are typically quite expensive. Testosterone replacement injections, such as Depo-Testosterone (testosterone cypionate) and Delatestryl (testosterone enanthate), are usually inexpensive. The injections are given only once every one to two weeks. The major disadvantage with injectable testosterone is that testosterone levels may be difficult to control. Levels may be too high after an injection and too low before the following injection. A testosterone replacement patch, such as Androderm, is applied every night and left on for 24 hours. Androderm can be applied to the arm, back or stomach, in an area without too much hair. Androderm can cause irritation of the skin. A testosterone tablet, Striant, is placed under the upper lip against the gums and replaced every 12 hours. Striant molds to the upper gum so that eating and drinking can occur normally. The testosterone tablet can irritate the gums and cause a bitter taste and toothache. People with low testosterone should work with their doctor or healthcare provider to find a safe, effective, and affordable testosterone replacement option for them. For more specific information, consult with your doctor or pharmacist for guidance based on your health status and current medications, particularly before taking any action. Derek Dore, PharmD

Use natural grooming products. Most grooming products these days contain parabens, another type of xenoestrogen. And by most, I mean more than 75% of all products. To reduce my exposure as much as possible, I became a hippy during my experiment and started using all natural, paraben-free grooming products. You can find most of these items at most health food stores:

Ok. So this product is meant to be taken continuously and without side-effects. But my question is, will there be replenishment from this product in aiding the body's natural ability to produce testosterone? In other words, will there ever be a time when I can say well I don't have to take this any more as my body is producing testosterone again on it's own and my muscle mass has been enhanced?
A 46 XY fetus is destined to become a male because the Y chromosome carries testicular determining gene which initiates transformation of the undifferentiated gonad into testes (Töhönen 2003). The testes subsequently produce both Mullerian Inhibiting Factor (to induce degeneration of the Mullerian system, the internal female ductal apparatus) and testosterone (to stimulate growth and development of the Wolffian system – epididymus, vas deferens, seminal vesicle and, after conversion to dihydrotestosterone (DHT) by the enzyme 5-α-reducase, the prostate gland). DHT is also the primary androgen to cause androgenization of the external genitalia.
Many endocrinologists are sounding the alarm about the damaging effects that come with exposure to common household chemicals. Called “endocrine disruptors,” these chemicals interfere with our body’s hormone system and cause problems like weight gain and learning disabilities. One type of endocrine disruptor is particularly bad news for our testosterone levels.
Late onset hypogonadism reflects a particular pathophysiology and it may not be appropriate to extrapolate results from studies concerning the effects of testosterone in treating hypogonadism of other etiology to aging males. For this reason, the age of men treated in clinical trials is certainly relevant. Other important factors include patient comorbidities and the preparation and route of testosterone replacement used in the study, which can affect the production of estrogen and dihydrotestosterone, testosterone’s active metabolites

Testosterone is used as a medication for the treatment of males with too little or no natural testosterone production, certain forms of breast cancer,[10] and gender dysphoria in transgender men. This is known as hormone replacement therapy (HRT) or testosterone replacement therapy (TRT), which maintains serum testosterone levels in the normal range. Decline of testosterone production with age has led to interest in androgen replacement therapy.[105] It is unclear if the use of testosterone for low levels due to aging is beneficial or harmful.[106]
Tribulus terrestris is an ingredient commonly presented as improving testosterone levels, but has not been found to be more effective than a placebo or possess any testosterone increasing properties. WebMD cautions that it interferes with Lithium and diabetes medications, and in general, not enough is known about tribulus terrestris to recommend a dosage for anyone.
Testosterone booster products obtained from trusted sources and administered as per the recommendations of the manufacturer may still present some health risks. The present case provided weak evidence of causality between acute liver injury and a commercial testosterone booster. To guarantee an optimal outcome with no severe side effects, further research is warranted to confirm the present findings and determine whether the effects observed in this case report would be statistically significant in larger samples.
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
Decreased testosterone production in men with rheumatoid arthritis is a common finding (Stafford et al 2000), and it is now generally recognized that androgens have the capacity to suppress both the hormonal and cellular immune response and so act as one of the body’s natural anti-inflammatory agents (Cutolo et al 2002). This known anti-inflammatory action of testosterone has led to studying the effect of testosterone therapy in men with rheumatoid disease. Although not all studies have reported positive effects of testosterone treatment (Hall et al 1996), some studies do demonstrate an improvement in both clinical and chemical markers of the immune response (Cutolo et al 1991; Cutolo 2000). This observation would go along with more recent evidence that testosterone or its metabolites protects immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells (Page et al 2006).
Transdermal preparations of testosterone utilize the fact that the skin readily absorbs steroid hormones. Initial transdermal preparations took the form of scrotal patches with testosterone loaded on to a membranous patch. Absorption from the scrotal skin was particularly good and physiological levels of testosterone with diurnal variation were reliably attained. The scrotal patches are now rarely used because they require regular shaving or clipping of scrotal hair and because they produce rather high levels of dihydrotestosterone compared to testosterone (Behre et al 1999). Subsequently, non-scrotal patches were developed but the absorptive capacity of non-scrotal skin is much lower, so these patches contain additional chemicals which enhance absorption. The non-scrotal skin patches produce physiological testosterone levels without supraphysiological dihydrotestosterone levels. Unfortunately, the patches produce a high rate of local skin reactions often leading to discontinuation (Parker and Armitage 1999). In the last few years, transdermal testosterone gel preparations have become available. These require daily application by patients and produce steady state physiological testosterone levels within a few days in most patients (Swerdloff et al 2000; Steidle et al 2003). The advantages compared with testosterone patches include invisibility, reduced skin irritation and the ability to adjust dosage, but concerns about transfer to women and children on close skin contact necessitate showering after application or coverage with clothes.

Fatherhood decreases testosterone levels in men, suggesting that the emotions and behavior tied to decreased testosterone promote paternal care. In humans and other species that utilize allomaternal care, paternal investment in offspring is beneficial to said offspring's survival because it allows the parental dyad to raise multiple children simultaneously. This increases the reproductive fitness of the parents, because their offspring are more likely to survive and reproduce. Paternal care increases offspring survival due to increased access to higher quality food and reduced physical and immunological threats.[60] This is particularly beneficial for humans since offspring are dependent on parents for extended periods of time and mothers have relatively short inter-birth intervals.[61] While extent of paternal care varies between cultures, higher investment in direct child care has been seen to be correlated with lower average testosterone levels as well as temporary fluctuations.[62] For instance, fluctuation in testosterone levels when a child is in distress has been found to be indicative of fathering styles. If a father's testosterone levels decrease in response to hearing their baby cry, it is an indication of empathizing with the baby. This is associated with increased nurturing behavior and better outcomes for the infant.[63]
While I do have a pretty manly mustache, I’m not a doctor or a medical expert. I’m a guy with a law degree he’s never used who blogs about manliness. What I’m about to share shouldn’t be taken as a substitute for qualified medical expertise. It’s simply my experience and views on the subject. Before you make any changes in lifestyle or diet, talk to your doctor or healthcare provider. Be smart.
The regular intake of testosterone boosters is known for the high level of safety comparing to the hormone injections and the use of illegal steroids. But still to protect yourself against any possible adverse reactions, you should remember that the supplementation can’t be continuous. The breaks from time to time are required. Such an approach to the use of boosters is healthy and best-working if you aspire to enhance own hormone production without any harm.
In fact, testosterone supplements might cause more problems than they solve. Studies have suggested a connection between supplements and heart problems. A 2010 study reported in The New England Journal of Medicine showed that some men over age 65 had an increase in heart problems when they used testosterone gel. A later of men younger than 65 at risk for heart problems and heart-healthy older men showed that both groups had a greater risk of heart attack when taking testosterone supplements.
Testosterone levels generally peak during adolescence and early adulthood. As you get older, your testosterone level gradually declines — typically about 1 percent a year after age 30 or 40. It is important to determine in older men if a low testosterone level is simply due to the decline of normal aging or if it is due to a disease (hypogonadism).