For this reason I recommend doing your own research on this supplement before taking it. 5g of ground up dried powder is what was used in the studies. I recommend taking 1-2 capsules of the concentrated form from Paradise Herbs. Alternatively, the Aggressive Strength Test Booster also has MP in its formula so you may prefer to use that blend instead. 

Studies have demonstrated reduced testosterone levels in men with heart failure as well as other endocrine changes (Tappler and Katz 1979; Kontoleon et al 2003). Treatment of cardiac failure with chronic mechanical circulatory support normalizes many of these changes, including testosterone levels (Noirhomme et al 1999). More recently, two double-blind randomized controlled trials of testosterone treatment for men with low or low-normal serum testosterone levels and heart failure have shown improvements in exercise capacity and symptoms (Pugh et al 2004; Malkin et al 2006). The mechanism of these benefits is currently unclear, although a study of the acute effects of buccal testosterone given to men with chronic cardiac failure under invasive monitoring showed that testosterone increased cardiac index and reduced systemic vascular resistance (Pugh et al 2003). Testosterone may prove useful in the management of cardiac failure but further research is needed.


Your first step should be to see your doctor. If you think you have low testosterone, we cannot stress enough that you should proceed with caution and talk to a medical professional — taking a booster can definitely do more harm than good. Low testosterone can be a symptom of more serious problems, like a pituitary disorder or a side-effect of medication, and a booster can mask the root cause. A doctor will be able to evaluate your testosterone levels with a simple blood test, and if you both decide a booster is the way to go, give the ingredients of any supplement a once-over to make sure that they’re not at risk of making your personal health situation worse.


Every ingredient can be harmful when taken in significant quantities (we go more into that below), so we pored over each booster’s ingredient list to make sure that they weren’t serving up an overdose. In particular, we took a close look at magnesium and zinc, which have enough scientific background behind them to offer hard upper limits on how much you can safely consume.


A: Endocrinology is a very difficult subject, some physicians and pharmacists alike have more difficulty with endocrinology than neurology. The reason for this is that there is no clear cut answer. Every hormone interacts with another hormone system in the body whether it be parathyroid hormone, cortisol, follicle stimulating hormone, etc. By in large, testosterone will increases lean body mass, which is to say that it typically increases muscle and or bone mass. We use it in the hospital to put weight on in patients needing to gain weight. That is partially the reason why we refer to testosterone as an "anabolic" hormone; anabolic meaning 'to build'. For more information, please visit us here at: //www.everydayhealth.com/drugs/testosterone Matt Curley, PharmD
Dr. Darryn Willoughby, a professor of health, human performance and recreation and the director of the Exercise and Biochemical Nutrition Laboratory at Baylor University, told us that even in studies where there was an increase in testosterone, it was only around 15–20 percent. “In men with clinically normal testosterone levels, this modest increase will most likely not be anabolic enough to improve exercise performance,” he says. So if you have normal testosterone levels, and are simply trying to get an extra edge in gaining muscle, losing weight, or some extra time in the bedroom — you might see some results from taking a testosterone booster. But really, these will be most useful for men with low testosterone trying to get back to a healthy testosterone range.

Longitudinal studies in male aging studies have shown that serum testosterone levels decline with age (Harman et al 2001; Feldman et al 2002). Total testosterone levels fall at an average of 1.6% per year whilst free and bioavailable levels fall by 2%–3% per year. The reduction in free and bioavailable testosterone levels is larger because aging is also associated with increases in SHBG levels (Feldman et al 2002). Cross-sectional data supports these trends but has usually shown smaller reductions in testosterone levels with aging (Feldman et al 2002). This is likely to reflect strict entry criteria to cross-sectional studies so that young healthy men are compared to older healthy men. During the course of longitudinal studies some men may develop pathologies which accentuate decreases in testosterone levels.
Bhatia et al (2006) studied 70 male patients with type2 diabetes mellitus (age range 24–78 years). Thirty-seven subjects were found to have hypogonadism based on a calculated free testosterone level of less than 6.5 μg/dl. The hypogonadal group had a statistically significant lower hematocrit. Anemia was observed in 23% of the patients (16 out of 70). In 14 of 15 anemic patients calculated free testosterone was low.

Male sex characteristics greatly depend on testosterone synthesis in your body. If you keep the levels of this hormone normal, you will prevent sexual potency issues. Accordingly, the elevation of testosterone levels helps combat the impairment of erectile function. The levels of this hormone also affect male fertility. If these levels grow, fertility improves. Aging has a negative impact on testosterone secretion. Such hormonal imbalance is inevitable and permanent. But it’s still possible to positively change the situation and stimulate hormone production by using the high-quality testosterone boosters.

Before the ready availability of non-injectible testosterone preparations, and because of their ease of administration by the oral route, 17-alkylated steroids were popular surrogate agents for testosterone. These substances, however, were capable of inducing several risk factors for coronary artery disease (Kopera 1993; Hall and Hall 2005) and as a consequence, particularly after the revelations of extensive 17-alkylated anabolic steroid abuse by athletes, testosterone, became unjustly incriminated. The evidence, however, tends to suggest just the opposite; testosterone may even be cardioprotective. Dunajska and colleagues have demonstrated that when compared to controls, men with coronary artery disease tend to have: lower total testosterone levels and free androgen indices, more abdominal fat, higher blood sugar and insulin levels (Dunajska et al 2004).


Falling in love decreases men's testosterone levels while increasing women's testosterone levels. There has been speculation that these changes in testosterone result in the temporary reduction of differences in behavior between the sexes.[53] However, it is suggested that after the "honeymoon phase" ends—about four years into a relationship—this change in testosterone levels is no longer apparent.[53] Men who produce less testosterone are more likely to be in a relationship[54] or married,[55] and men who produce more testosterone are more likely to divorce;[55] however, causality cannot be determined in this correlation. Marriage or commitment could cause a decrease in testosterone levels.[56] Single men who have not had relationship experience have lower testosterone levels than single men with experience. It is suggested that these single men with prior experience are in a more competitive state than their non-experienced counterparts.[57] Married men who engage in bond-maintenance activities such as spending the day with their spouse/and or child have no different testosterone levels compared to times when they do not engage in such activities. Collectively, these results suggest that the presence of competitive activities rather than bond-maintenance activities are more relevant to changes in testosterone levels.[58]

Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
Recently, a panel with cooperation from international andrology and urology societies, published specific recommendations with regard to the diagnosis of Late-onset Hypogonadism (Nieschlag et al 2005). These are summarized in the following text. It is advised that at least two serum testosterone measurements, taken before 11 am on different mornings, are necessary to confirm the diagnosis. The second sample should also include measurement of gonadotrophin and prolactin levels, which may indicate the need for further investigations for pituitary disease. Patients with serum total testosterone consistently below 8 nmol/l invariably demonstrate the clinical syndrome of hypogonadism and are likely to benefit from treatment. Patients with serum total testosterone in the range 8–12 nmol/l often have symptoms attributable to hypogonadism and it may be decided to offer either a clinical trial of testosterone treatment or to make further efforts to define serum bioavailable or free testosterone and then reconsider treatment. Patients with serum total testosterone persistently above 12 nmol/l do not have hypogonadism and symptoms are likely to be due to other disease states or ageing per se so testosterone treatment is not indicated.
Testosterone is an anabolic steroid hormone that plays a critical role in metabolism, sex drive, muscle building, mood regulation, memory & cognitive function.  Normal testosterone levels play a huge role in maintaining optimal weight as well as reducing risk of degenerative diseases such as osteoporosis, heart disease, diabetes, & certain cancers (1, 2, 3).
Zaima, N., Kinoshita, S., Hieda, N., Kugo, H., Narisawa, K., Yamamoto, A., ... Moriyama, T. (2016, September). Effect of dietary fish oil on mouse testosterone level and the distribution of eicosapentaenoic acid-containing phosphatidylcholine in testicular interstitium. Biochemistry and Biophysics Reports, 7, 259–265. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613343/
Currently available testosterone preparations in common use include intramuscular injections, subcutaneous pellets, buccal tablets, transdermal gels and patches (see Table 2). Oral testosterone is not widely used. Unmodified testosterone taken orally is largely subject to first-pass metabolism by the liver. Oral doses 100 fold greater than physiological testosterone production can be given to achieve adequate serum levels. Methyl testosterone esters have been associated with hepatotoxicity. There has been some use of testosterone undecanoate, which is an esterified derivative of testosterone that is absorbed via the lymphatic system and bypasses the liver. Unfortunately, it produces unpredictable testosterone levels and increases testosterone levels for only a short period after each oral dose (Schurmeyer et al 1983).

Among the changes which occur with aging are those that affect several aspects of the endocrine system which reduces its secretions to varying degrees in different individuals. These reductions in secretions are identified by a poor but widely recognized appellation, the “pauses”: menopause (decreased ovarian function), adrenopause (decreased adrenal function, especially with regard to dehydroepiandrosterone secretion), somatopause (decreased growth hormone production), andropause (decreased hypothalamic-pituitary testicular function with diminished testosterone availability and impaired spermatogenesis) (Lamberts 1997).
Trials of testosterone treatment in men with type 2 diabetes have also taken place. A recent randomized controlled crossover trial assessed the effects of intramuscular testosterone replacement to achieve levels within the physiological range, compared with placebo injections in 24 men with diabetes, hypogonadism and a mean age of 64 years (Kapoor et al 2006). Ten of these men were insulin treated. Testosterone treatment led to a significant reduction in glycated hemoglobin (HbA1C) and fasting glucose compared to placebo. Testosterone also produced a significant reduction in insulin resistance, measured by the homeostatic model assessment (HOMA), in the fourteen non-insulin treated patients. It is not possible to measure insulin resistance in patients treated with insulin but five out of ten of these patients had a reduction of insulin dose during the study. Other significant changes during testosterone treatment in this trial were reduced total cholesterol, waist circumference and waist-hip ratio. Similarly, a placebo-controlled but non-blinded trial in 24 men with visceral obesity, diabetes, hypogonadism and mean age 57 years found that three months of oral testosterone treatment led to significant reductions in HbA1C, fasting glucose, post-prandial glucose, weight, fat mass and waist-hip ratio (Boyanov et al 2003). In contrast, an uncontrolled study of 150 mg intramuscular testosterone given to 10 patients, average age 64 years, with diabetes and hypogonadism found no significant change in diabetes control, fasting glucose or insulin levels (Corrales et al 2004). Another uncontrolled study showed no beneficial effect of testosterone treatment on insulin resistance, measured by HOMA and ‘minimal model’ of area under acute insulin response curves, in 11 patients with type 2 diabetes aged between 33 and 73 years (Lee et al 2005). Body mass index was within the normal range in this population and there was no change in waist-hip ratio or weight during testosterone treatment. Baseline testosterone levels were in the low-normal range and patients received a relatively small dose of 100 mg intramuscular testosterone every three weeks. A good increase in testosterone levels during the trial is described but it is not stated at which time during the three week cycle the testosterone levels were tested, so the lack of response could reflect an insufficient overall testosterone dose in the trial period.
Zaima, N., Kinoshita, S., Hieda, N., Kugo, H., Narisawa, K., Yamamoto, A., ... Moriyama, T. (2016, September). Effect of dietary fish oil on mouse testosterone level and the distribution of eicosapentaenoic acid-containing phosphatidylcholine in testicular interstitium. Biochemistry and Biophysics Reports, 7, 259–265. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613343/
You should also know that a lot of people are deficient in Vitamin D. In the USA & many other western regions in the world, vitamin D deficiency is at epidemic proportions. The best way to increase your D levels is sun exposure. You only need 20-30 minutes of exposure to a large amount of skin (i.e., take your shirt off and go for a walk during the day).

At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice.

Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
More can be learned from a large, randomized, placebo-controlled trial of finasteride treatment in 18,800 men aged 55 or more. Finasteride is a 5α-reductase inhibitor which acts to prevent the metabolism of testosterone to dihydrotestosterone (DHT) – the most active androgen in the prostate. The trial showed a greater overall incidence of prostate cancer in the control group, but men treated with finasteride were more likely to have high grade tumors (Thompson et al 2003), suggesting that reduced androgen exposure of the prostate may delay the presentation of prostate cancer and/or promote advanced disease in some other way.
No one will argue with the well-established fact that the dramatic lows of testosterone as seen in castration or other significant primary testicular disturbances such as those induced by chemotherapy, radiation therapy, congenital problems, or as seen in secondary testicular insufficiency (eg, large compressive pituitary or hypothalamic tumors) produce dramatic signs and symptoms of testosterone deficiency that require testosterone replacement therapy. Less clear, or at least more controversial, is the necessity of treating the gentler reduction of testosterone seen in the aging process.
Testosterone is a hormone with multifaceted physiological functions and multiple associations with pathophysiological states. It is an important hormone in male reproductive and metabolic function from intrauterine life to old age. In severe or classical hypogonadal states there is little controversy about the need to administer testosterone by an intramuscular, oral or transdermal formulation. There is controversy about making the diagnosis in the less severe cases of hypogonadism associated with the aging male but the current evidence suggests that this is efficacious in appropriately selected men and that there is little if any risk in giving aging symptomatic hypogonadal men a 6 month trial of therapy to determine whether symptoms will improve.
Testosterone is only one of many factors that influence aggression and the effects of previous experience and environmental stimuli have been found to correlate more strongly. A few studies indicate that the testosterone derivative estradiol (one form of estrogen) might play an important role in male aggression.[66][67][68][69] Studies have also found that testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus.[70]
To find the best testosterone booster, we collected every supplement available on BodyBuilding.com, and cross-checked our list against the top results on best of lists like MensFitness, BroScience, and BodyNutrition. We only looked at pills since some of the ingredients in testosterone boosters have a reputation for tasting bad, and powders just prolong the experience. There are a lot — 133 of them to be precise — and they all claim to boost testosterone levels. Testosterone (for men) is “thought to regulate sex drive (libido), bone mass, fat distribution, muscle mass and strength, and the production of red blood cells and sperm.” If a supplement can increase your natural testosterone levels, the rest should follow. As we mentioned above, it’s not that simple, and at best, you’ll experience only a short-lived boost.
As you can see, the entire workout is only 20 minutes. Twenty minutes! That really is a beautiful thing. And within those 20 minutes, 75 percent of that time is warming up, recovering or cooling down. You're really only working out intensely for four minutes. It's hard to believe if you have never done this that you can actually get that much benefit from four minutes of exercise. That's all it is.
There are no studies showing its effects on healthy males, but it has been shown to drastically improve testosterone in infertile males (ref 77). It's also packed full of minerals, so is a great superfood nevertheless. I use the Sunfoods brand. Make sure you buy from a quality brand, as there are a lot of poor shilajit products out there, also some have been shown to be high in heavy metals. 
Most studies support a link between adult criminality and testosterone, although the relationship is modest if examined separately for each sex. Nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have also found testosterone to be associated with behaviors or personality traits linked with criminality such as antisocial behavior and alcoholism. Many studies have also been done on the relationship between more general aggressive behavior/feelings and testosterone. About half the studies have found a relationship and about half no relationship.[66]
Pellets. Your doctor will place the testosterone pellets under the skin of your upper hip or buttocks. Your doctor will give a shot of local anesthesia to numb your skin, then make a small cut and place the pellets inside the fatty tissues underneath your skin. This medication dissolves slowly and is released over about 3-6 months, depending on the number of pellets. 
Prostate hyperplasia (BPH), or simply an enlarged prostate, is a serious problem among men, especially those over age 60. As I’ve pointed out, high testosterone levels are not a precursor to an enlarged prostate or cancer; rather, excessive DHT and estrogen levels formed as metabolites of testosterone are. Conventional medicine uses two classes of drugs to treat BPH, each having a number of serious side effects. These are:
There have been case reports of development of prostate cancer in patients during treatment with testosterone, including one case series of twenty patients (Gaylis et al 2005). It is not known whether this reflects an increase in incidence, as prostate cancer is very common and because the monitoring for cancer in patients treated with testosterone is greater. Randomized controlled trials of testosterone treatment have found a low incidence of prostate cancer and they do not provide evidence of a link between testosterone treatment and the development of prostate cancer (Rhoden and Morgentaler 2004). More large scale clinical trials of longer durations of testosterone replacement are required to confirm that testosterone treatment does not cause prostate cancer. Overall, it is not known whether testosterone treatment of aging males with hypogonadism increases the risk of prostate cancer, but monitoring for the condition is clearly vital. This should take the form of PSA blood test and rectal examination every three months for the first year of treatment and yearly thereafter (Nieschlag et al 2005). Age adjusted PSA reference ranges should be used to identify men who require further assessment. The concept of PSA velocity is also important and refers to the rate of increase in PSA per year. Patients with abnormal rectal examination suggestive of prostate cancer, PSA above the age specific reference range or a PSA velocity greater than 0.75 ng/ml/yr should be referred to a urologist for consideration of prostate biopsy.
Do low levels of testosterone produce symptoms in middle-aged men? Absolutely. In fact, the classic symptoms were first recognized more than 70 years ago when two American physicians, Carl Heller, MD, and Gordon Myers, MD, showed the effectiveness of testosterone treatment for symptoms of fatigue, depression, irritability, low sex drive, erectile dysfunction, night sweats, and hot flashes in men. Over the years, subsequent studies have found that some—but not all—men with low, age-adjusted testosterone levels exhibit symptoms consistent with andropause. All experience improvement with testosterone therapy.
Sleep apnea is another frequently listed contraindication to testosterone treatment. There have been a few reports of the development, or worsening, of sleep apnea during testosterone therapy (Matsumoto et al 1985) but sleep apnea is actually associated with lower serum testosterone levels (Luboshitzky et al 2002). The reduction in fat mass during treatment with testosterone could potentially be beneficial for sleep apnea, so many specialists will still consider patients for treatment with appropriate monitoring. It is wise to take a clinical history for sleep apnea during testosterone treatment in all men and perform sleep studies in those who develop symptoms.
In addition to weight training, combining this with interval training like burst training is the best overall combo to increase HGH. In fact, Burst training has been proven to not only boost T-levels, it helps keeps your testosterone elevated and can prevent its decline. Burst training involves exercising at 90–100 percent of your maximum effort for a short interval in order to burn your body’s stored sugar (glycogen), followed by a period of low impact for recovery.
In summary it’s important to know that this topic is still hotly debated, and there are a lot of inconsistencies in the data. We do know that soy contains phytoestrogens and does seem to have a lot of affects on the body, including some studies that show decreased Testosterone levels. For that reason (and the fact that it tastes like ass) I avoid it, and I recommend you also avoid it (in particular soy isolates!) if you’re seeking higher testosterone.

Longjack, also known as Tongkat ali and pasak bumi, is a shrub hailing from Southeast Asia purporting to improve libido. It’s gaining traction in the scientific community for potentially increasing testosterone levels, and researchers at South Africa’s University of the Western Cape found that longjack improved testosterone levels and muscular strength in physically active seniors (a population with typically low testosterone).
Finally, we looked at the proprietary blends of our remaining boosters, and dug into their ingredient lists. Supplements frequently include ingredients known for their “folk-lore” value; they’re believed to work, even when there isn’t any scientific background to prove it. Though we didn’t ding points if an ingredient wasn’t proven to be good (just so long as it wasn’t proven to be bad), we didn’t want to include any ingredient with evidence of causing harm.
At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice.

There is a polymorphic CAG repeat sequence in the androgen receptor gene, which codes for a variable number of glutamine amino acids in the part of the receptor affecting gene transcription. A receptor with a short CAG sequence produces greater activity when androgens attach, and men with shorter CAG polymorphisms exhibit androgenic traits, such as preserved bone density (Zitzmann et al 2001) and prostate growth during testosterone treatment (Zitzmann et al 2003). Indirect evidence of the importance of androgens in the development of prostate cancer is provided by case control study findings of a shorter, more active CAG repeat sequence in the androgen receptor gene of patients with prostate cancer compared with controls (Hsing et al 2000, 2002).
Mood disturbance and dysthymia are part of the clinical syndrome of hypogonadism. Epidemiological studies have found a positive association between testosterone levels and mood, and depressed aging males have lower testosterone levels than controls (Barrett-Connor, Von Muhlen et al 1999). Furthermore, induction of a hypogonadal state during treatment of men for prostate cancer leads to an increase in depression scores (Almeida et al 2004). Trials of testosterone treatment effects on mood have varied in outcome. Data on the effects on men with depression are conflicting (Seidman et al 2001; Pope et al 2003) but there is evidence that testosterone treatment of older hypogonadal men does result in improvements in mood (Wang et al 1996) and that this may occur through changes in regional brain perfusion (Azad et al 2003).
The first period occurs between 4 and 6 weeks of the gestation. Examples include genital virilisation such as midline fusion, phallic urethra, scrotal thinning and rugation, and phallic enlargement; although the role of testosterone is far smaller than that of dihydrotestosterone. There is also development of the prostate gland and seminal vesicles.

There are a lot of test booster blends out there. A lot of them are junk. I have tried to cover the most effective herbs above. As always, I recommend doing your own research and experiment to see if you notice an effect. If you would like one easy herbal solution I recommend starting with Mike Mahlers Aggressive Strength product purely because I have solid anecdotal evidence of its effectiveness. But again, supplements should be seen purely as that - a supplement to a healthy diet, plenty of sleep, hard training with adequate rest.


It seems like today it’s a badge of honor to train every day until exhaustion. The ethos is to push yourself harder and harder every day. If that’s your philosophy towards exercise, you might be sabotaging your testosterone levels (as well as your 20 Mile March). Studies have shown that overtraining can reduce testosterone levels significantly. Yes, it’s important to exercise hard, but it’s even more important to give your body rest so it can recuperate from the damage you inflicted upon it.
Acne and Allergic Reactions: The testosterone is universally regarded as one of the triggering factors for acne. It stimulates the activity of oil glands making the skin more oily and vulnerable to acne. This body hormone might also cause allergic reactions, such as hives, rash, difficulty breathing, itching, chest tightness, and big swelling of the facial parts.
These results have been echoed in clinical trials. A meta-analysis of 24 RCTs looked at weight loss caused by diet or bariatric surgery:[22] In the diet studies, the average 9.8% weight loss was linked to a testosterone increase of 2.9 nmol/L (84 ng/dL). In the bariatric-surgery studies, the average 32% weight loss was linked to a testosterone increase of 8.7 nmol/L (251 ng/dL).
Conflicting results have been obtained concerning the importance of testosterone in maintaining cardiovascular health.[29][30] Nevertheless, maintaining normal testosterone levels in elderly men has been shown to improve many parameters that are thought to reduce cardiovascular disease risk, such as increased lean body mass, decreased visceral fat mass, decreased total cholesterol, and glycemic control.[31]
This paper will aim to review the current evidence of clinical effects of testosterone treatment within an aging male population. As with any other clinical intervention a decision to treat patients with testosterone requires a balance of risk versus benefit. We shall try to facilitate this by examining the effects of testosterone on the various symptoms and organs involved.
Testosterone insufficiency has been associated with HIV infection in men (Dobs et al 1988). Early reports suggested that testosterone therapy may have an ameliorating effect on both depression and decreased energy in HIV infected men, even if testosterone levels were not reduced (Rabkin et al 1999; Grinspoon et al 2000; Rabkin et al 2000). Both depression and fatigue, however, are common features of HIV-positive men and may be associated with factors other than reduced levels of testosterone. The disease itself may induce depression and fatigue may be a consequence of the disease, per se, or of some of the medications used to control HIV.
Unlike aerobics or prolonged moderate exercise, short, intense exercise was found to be beneficial in increasing testosterone levels. The results are enhanced with the help of intermittent fasting. Intermittent fasting helps boost testosterone by improving the expression of satiety hormones, like insulin, leptin, adiponectin, glucacgon-like peptide-1 (GLP-1), cholecystokinin (CKK), and melanocortins, which are linked to healthy testosterone function, increased libido, and the prevention of age-induced testosterone decline. When it comes to an exercise plan that will complement testosterone function and production (along with overall health), I recommend including not just aerobics in your routine, but also:
×