Type 2 diabetes is an important condition in terms of morbidity and mortality, and the prevalence is increasing in the developed and developing world. The prevalence also increases with age. Insulin resistance is a primary pathological feature of type 2 diabetes and predates the onset of diabetes by many years, during which time raised serum insulin levels compensate and maintain normoglycemia. Insulin resistance and/or impaired glucose tolerance are also part of the metabolic syndrome which also comprises an abnormal serum lipid profile, central obesity and hypertension. The metabolic syndrome can be considered to be a pre-diabetic condition and is itself linked to cardiovascular mortality. Table 1 shows the three commonly used definitions of the metabolic syndrome as per WHO, NCEPIII and IDF respectively (WHO 1999; NCEPIII 2001; Zimmet et al 2005).
Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).
Most studies support a link between adult criminality and testosterone, although the relationship is modest if examined separately for each sex. Nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have also found testosterone to be associated with behaviors or personality traits linked with criminality such as antisocial behavior and alcoholism. Many studies have also been done on the relationship between more general aggressive behavior/feelings and testosterone. About half the studies have found a relationship and about half no relationship.[66]
Epidemiological evidence supports a link between testosterone and glucose metabolism. Studies in non-diabetic men have found an inverse correlation of total or free testosterone with glucose and insulin levels (Simon et al 1992; Haffner et al 1994) and studies show lower testosterone levels in patients with the metabolic syndrome (Laaksonen et al 2003; Muller et al 2005; Kupelian et al 2006) or diabetes (Barrett-Connor 1992; Andersson et al 1994; Rhoden et al 2005). A study of patients with type 2 diabetes using measurement of serum free testosterone by the gold standard method of equilibrium dialysis, found a 33% prevalence of biochemical hypogonadism (Dhindsa et al 2004). The Barnsley study demonstrated a high prevalence of clinical and biochemical hypogonadism with 19% having total testosterone levels below 8 nmol/l and a further 25% between 8–12 nmol/l (Kapoor, Aldred et al 2007). There are also a number longitudinal studies linking low serum testosterone levels to the future development of the metabolic syndrome (Laaksonen et al 2004) or type 2 diabetes (Haffner et al 1996; Tibblin et al 1996; Stellato et al 2000; Oh et al 2002; Laaksonen et al 2004), indicating a possible role of hypogonadism in the pathogenesis of type 2 diabetes in men. Alternatively, it has been postulated that obesity may be the common link between low testosterone levels and insulin resistance, diabetes and cardiovascular disease (Phillips et al 2003; Kapoor et al 2005). With regard to this hypothesis, study findings vary as to whether the association of testosterone with diabetes occurs independently of obesity (Haffner et al 1996; Laaksonen et al 2003; Rhoden et al 2005).
An added testosterone benefit of my high fat and balanced protein and carb diet was that it probably helped me lose some body fat (I went from 18% to 12% body fat). Studies show that high fat diets actually contribute to increased body fat loss. And as we discussed earlier, as you lose body fat, your T production ramps up. Virtuous cycle for the win!

The normal development of the prostate gland is dependent on the action of testosterone via the androgen receptor, and abnormal biosynthesis of the hormone or inactivating mutations of the androgen receptor are associated with a rudimentary prostate gland. Testosterone also requires conversion to dihydrotestosterone in the prostate gland for full activity. In view of this link between testosterone and prostate development, it is important to consider the impact that testosterone replacement may have on the prevalence and morbidity associated with benign prostatic hypertrophy (BPH) and prostate cancer, which are the common conditions related to pathological growth of the prostate gland.

Common side effects from testosterone medication include acne, swelling, and breast enlargement in males.[10] Serious side effects may include liver toxicity, heart disease, and behavioral changes.[10] Women and children who are exposed may develop virilization.[10] It is recommended that individuals with prostate cancer not use the medication.[10] It can cause harm if used during pregnancy or breastfeeding.[10]
Dobs and colleagues found that men with an increased body mass index had both reduced testosterone and reduced high density lipoprotein (HDL) levels. Treatment with testosterone increased the levels of HDL (Dobs et al 2001). Rising levels of HDL are not a consistent finding with TRT. More often, however, one finds reduced total cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels with TRT (Zgliczynski et al 1996; Whitsel et al 2001).
6)  Take Cold Showers:  Cold showers have been known to stimulate and boost testosterone production and improve metabolism, detoxification and brain function.  Start your shower with warm/hot water and turn it to cold for the last 30-60 seconds while pumping your muscles and creating a big shiver as your muscles contract.  That will help to boost internal heat and boost testosterone production.  This article will help you.
The sexual hormone can encourage fair behavior. For the study, subjects took part in a behavioral experiment where the distribution of a real amount of money was decided. The rules allowed both fair and unfair offers. The negotiating partner could subsequently accept or decline the offer. The fairer the offer, the less probable a refusal by the negotiating partner. If no agreement was reached, neither party earned anything. Test subjects with an artificially enhanced testosterone level generally made better, fairer offers than those who received placebos, thus reducing the risk of a rejection of their offer to a minimum. Two later studies have empirically confirmed these results.[71][72][73] However men with high testosterone were significantly 27% less generous in an ultimatum game.[74] The Annual NY Academy of Sciences has also found anabolic steroid use which increase testosterone to be higher in teenagers, and this was associated with increased violence.[75] Studies have also found administered testosterone to increase verbal aggression and anger in some participants.[76]
Growth of spermatogenic tissue in testicles, male fertility, penis or clitoris enlargement, increased libido and frequency of erection or clitoral engorgement occurs. Growth of jaw, brow, chin, and nose and remodeling of facial bone contours, in conjunction with human growth hormone occurs.[21] Completion of bone maturation and termination of growth. This occurs indirectly via estradiol metabolites and hence more gradually in men than women. Increased muscle strength and mass, shoulders become broader and rib cage expands, deepening of voice, growth of the Adam's apple. Enlargement of sebaceous glands. This might cause acne, subcutaneous fat in face decreases. Pubic hair extends to thighs and up toward umbilicus, development of facial hair (sideburns, beard, moustache), loss of scalp hair (androgenetic alopecia), increase in chest hair, periareolar hair, perianal hair, leg hair, armpit hair.
This content is strictly the opinion of Dr. Josh Axe and is for informational and educational purposes only. It is not intended to provide medical advice or to take the place of medical advice or treatment from a personal physician. All readers/viewers of this content are advised to consult their doctors or qualified health professionals regarding specific health questions. Neither Dr. Axe nor the publisher of this content takes responsibility for possible health consequences of any person or persons reading or following the information in this educational content. All viewers of this content, especially those taking prescription or over-the-counter medications, should consult their physicians before beginning any nutrition, supplement or lifestyle program.
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
Ginger has been used as medicine for centuries due to its potent antioxidant potential. It also exhibits anti-inflammatory properties which makes it best for natural therapeutics. It improves the sexual function and testosterone levels by stimulating the luteinizing hormone. It also enhances the sperm count, which makes it useful to solve infertility issues.
Intracoronary artery infusion of testosterone causes significant coronary artery dilatation and not constriction as previously thought (Webb et al 1999). When degree of coronary obstruction is assessed by angiography, there is a direct relationship between degree of coronary artery narrowing and reduced testosterone levels (Phillips et al 1994). Men with low testosterone levels have been observed to have: premature atherosclerosis, increased visceral adipose tissue, hyperinsulinemia, and other risk factors for myocardial infarction (Phillips 2005). Insulin resistance has been shown to be associated with a decrease in Leydig cell secretion of testosterone (Pitteloud et al 2005). Muller and colleagues suggest that low endogenous total testosterone and SHBG levels increase the risk of metabolic syndrome in aging and aged men. They demonstrated that low levels of testosterone are related to lower insulin sensitivity and higher fasting insulin levels (Muller et al 2005). These authors speculate that testosterone might play a protective role in the development of metabolic syndrome, insulin resistance, diabetes mellitus and cardiovascular disease in aging men.
Everyone knows that carbohydrates are extremely important for testosterone production, but instead of reaching for grains during your next meal, stack your plate high with potatoes. Research reveals that grains have inflammatory properties, but the testosterone-friendly starches in potatoes will have the bodybuilder in your life smiling at dinnertime!
The hypogonadal-obesity-adipocytokine cycle hypothesis. Adipose tissue contains the enzyme aromatase which metabolises testosterone to oestrogen. This results in reduced testosterone levels, which increase the action of lipoprotein lipase and increase fat mass, thus increasing aromatisation of testosterone and completing the cycle. Visceral fat also promotes lower testosterone levels by reducing pituitary LH pulse amplitude via leptin and/or other factors. In vitro studies have shown that leptin also inhibits testosterone production directly at the testes. Visceral adiposity could also provide the link between testosterone and insulin resistance (Jones 2007).
In 1927, the University of Chicago's Professor of Physiologic Chemistry, Fred C. Koch, established easy access to a large source of bovine testicles — the Chicago stockyards — and recruited students willing to endure the tedious work of extracting their isolates. In that year, Koch and his student, Lemuel McGee, derived 20 mg of a substance from a supply of 40 pounds of bovine testicles that, when administered to castrated roosters, pigs and rats, remasculinized them.[179] The group of Ernst Laqueur at the University of Amsterdam purified testosterone from bovine testicles in a similar manner in 1934, but isolation of the hormone from animal tissues in amounts permitting serious study in humans was not feasible until three European pharmaceutical giants—Schering (Berlin, Germany), Organon (Oss, Netherlands) and Ciba (Basel, Switzerland)—began full-scale steroid research and development programs in the 1930s.
FITNESS DISCLAIMER: The information contained in this site is for educational purposes only. Vigorous high-intensity exercise is not safe or suitable for everyone. You should consult a physician before beginning a new diet or exercise program and discontinue exercise immediately and consult your physician if you experience pain, dizziness, or discomfort. The results, if any, from the exercises may vary from person-to-person. Engaging in any exercise or fitness program involves the risk of injury. Mercola.com or our panel of fitness experts shall not be liable for any claims for injuries or damages resulting from or connected with the use of this site. Specific questions about your fitness condition cannot be answered without first establishing a trainer-client relationship.
During the second trimester, androgen level is associated with sex formation.[13] This period affects the femininization or masculinization of the fetus and can be a better predictor of feminine or masculine behaviours such as sex typed behaviour than an adult's own levels. A mother's testosterone level during pregnancy is correlated with her daughter's sex-typical behavior as an adult, and the correlation is even stronger than with the daughter's own adult testosterone level.[14]
Nutritional developers formulated Nugenix® with Testofen®, a key natural ingredient to help boost “free” testosterone along with resistance training. This key ingredient is carefully extracted from the fenugreek plant. A Testofen® study in Irvine, California indicated positive free testosterone-related results. Nugenix also includes L-Citrulline Malate, Tribulus, Zinc, plus Vitamins B6 and B12 to help promote overall health and performance.*
Longitudinal studies in male aging studies have shown that serum testosterone levels decline with age (Harman et al 2001; Feldman et al 2002). Total testosterone levels fall at an average of 1.6% per year whilst free and bioavailable levels fall by 2%–3% per year. The reduction in free and bioavailable testosterone levels is larger because aging is also associated with increases in SHBG levels (Feldman et al 2002). Cross-sectional data supports these trends but has usually shown smaller reductions in testosterone levels with aging (Feldman et al 2002). This is likely to reflect strict entry criteria to cross-sectional studies so that young healthy men are compared to older healthy men. During the course of longitudinal studies some men may develop pathologies which accentuate decreases in testosterone levels.
A: According to the NIH, normal values for testosterone levels in men can range from 300 to 1,200ng/dL. There can be many different causes of low testosterone including age, diseases, accidents, and medications. Symptoms of low testosterone may include: loss of sex drive, erectile dysfunction, depressed mood, and difficulty concentrating. Low testosterone levels may also bring around body changes including: hair loss, decrease in blood cells possibly leading to anemia, fragile bones, and a decrease in muscle mass. There are different testosterone replacement therapies including patches, such as Androderm; gels, such as Androgel and Testim; and injections, such as testosterone cypionate. Only your health care provider can decide if and what kind of testosterone replacement therapy is appropriate for you. Testosterone replacement therapy is not right for everyone. Patient with certain prostate issues or breast cancer should not take testosterone. For more specific information, consult with your doctor for guidance based on your health status and current medications, particularly before taking any action. Kristen Dore, PharmD
Sprinting has been shown numerous times that it has positive effects on testosterone levels. One 2011 study (ref 84) looked at weightlifters who performed 4x35m sprints twice a week. In contrast to the control group (who continued lifting but did not sprint), it was found that “After the 4-week training program, total testosterone and the total testosterone/cortisol ratio increased significantly in the (sprinters) EXP group”.

This is an important herb which has been used as therapeutic for centuries. It helps in improving sexual desires and boosts T levels. It is also useful in erectile dysfunction by raising T levels. People having normal T level don’t get affected by taking Tribulus. With the testosterone boosting qualities of Tribulus, this natural supplement works great for building muscle and gaining strength in the gym.

Epidemiological studies suggest that many significant clinical findings and important disease states are linked to low testosterone levels. These include osteoporosis (Campion and Maricic 2003), Alzheimer’s disease (Moffat et al 2004), frailty, obesity (Svartberg, von Muhlen, Sundsfjord et al 2004), diabetes (Barrett-Connor 1992), hypercholesterolemia (Haffner et al 1993; Van Pottelbergh et al 2003), hypertension (Phillips et al 1993), cardiac failure (Tappler and Katz 1979; Kontoleon et al 2003) and ischemic heart disease (Barrett-Connor and Khaw 1988). The extent to which testosterone deficiency is involved in the pathogenesis of these conditions, or to which testosterone supplementation could be useful in their treatment is an area of great interest with many unanswered questions.
It is hard to know how many men among us have TD, although data suggest that overall about 2.1% (about 2 men in every 100) may have TD. As few as 1% of younger men may have TD, while as many as 50% of men over 80 years old may have TD. People who study the condition often use different cut-off points for the numbers, so you may hear different numbers being stated.
During the month before my experiment, I was definitely sleep deprived. Some nights I was only getting 4 to 5 hours. Testosterone killer! During my experiment I tried to get 8 to 9 hours of sleep at night as consistently as possible. I had to go to bed earlier, but I was only cutting into time that I would have been using to mindlessly surf the net anyway.

Sportsmen are permitted to use the boosters to trigger the mechanism of testosterone synthesis in the body. These products won a wide popularity among the sportsmen. The matter is that the supplements work by substantially enhancing sports performance, reviving strength, boosting endurance, coping with excessive stress levels, and decreasing time necessary for recovery after exhausting exercises.
Testosterone is significantly correlated with aggression and competitive behaviour and is directly facilitated by the latter. There are two theories on the role of testosterone in aggression and competition.[77] The first one is the challenge hypothesis which states that testosterone would increase during puberty thus facilitating reproductive and competitive behaviour which would include aggression.[77] Thus it is the challenge of competition among males of the species that facilitates aggression and violence.[77] Studies conducted have found direct correlation between testosterone and dominance especially among the most violent criminals in prison who had the highest testosterone levels.[77] The same research also found fathers (those outside competitive environments) had the lowest testosterone levels compared to other males.[77]
One study found that men who took 3,332 international units (IU) of vitamin D daily for one year significantly increased their testosterone levels. But vitamin D supplements may only work for men who are severely deficient in this specific vitamin. Another study found that men without a vitamin D deficiency had no increase in testosterone levels after taking vitamin D.
If you're a man who's experiencing symptoms such as decreased sex drive, erectile dysfunction, depressed mood, and difficulties with concentration and memory, and you think low testosterone may be to blame, you can have your levels tested. Since testosterone levels fluctuate throughout the day, you'll probably need more than a blood test to get a true picture of your levels.
A related issue is the potential use of testosterone as a coronary vasodilator and anti-anginal agent. Testosterone has been shown to act as a vasodilator of coronary arteries at physiological concentrations during angiography (Webb, McNeill et al 1999). Furthermore men given a testosterone injection prior to exercise testing showed improved performance, as assessed by ST changes compared to placebo (Rosano et al 1999; Webb, Adamson et al 1999). Administration of one to three months of testosterone treatment has also been shown to improve symptoms of angina and exercise test performance (Wu and Weng 1993; English et al 2000; Malkin, Pugh, Morris et al 2004). Longer term studies are underway. It is thought that testosterone improves angina due its vasodilatory action, which occurs independently of the androgen receptor, via blockade of L-type calcium channels at the cell membrane of the vascular smooth muscle in an action similar to the dihydropyridine calcium-channel blockers such as nifedipine (Hall et al 2006).

Male sex characteristics greatly depend on testosterone synthesis in your body. If you keep the levels of this hormone normal, you will prevent sexual potency issues. Accordingly, the elevation of testosterone levels helps combat the impairment of erectile function. The levels of this hormone also affect male fertility. If these levels grow, fertility improves. Aging has a negative impact on testosterone secretion. Such hormonal imbalance is inevitable and permanent. But it’s still possible to positively change the situation and stimulate hormone production by using the high-quality testosterone boosters.
Zinc is little more of a nice-to-have ingredient than a must-have. It’s on our radar as an ingredient that possibly boosts testosterone levels, and while we couldn’t find enough supporting evidence that taking zinc would increase natural testosterone, low zinc levels have been connected to infertility. A low zinc level is also possibly a sign of hypogonadism. The closest support we found is in a study which found that people recovered from nutritional deficiency-related problems more quickly if they took a zinc supplement than those who did not. Zinc is available in many foods, such as oysters, fortified breakfast cereals, and red meat.
The hormone also plays a role in sex drive, sperm production, fat distribution, red cell production, and maintenance of muscle strength and mass, according to the Mayo Clinic. For these reasons, testosterone is associated with overall health and well-being in men. One 2008 study published in the journal Frontiers of Hormone Research even linked testosterone to the prevention of osteoporosis in men.
Type 2 diabetes is an important condition in terms of morbidity and mortality, and the prevalence is increasing in the developed and developing world. The prevalence also increases with age. Insulin resistance is a primary pathological feature of type 2 diabetes and predates the onset of diabetes by many years, during which time raised serum insulin levels compensate and maintain normoglycemia. Insulin resistance and/or impaired glucose tolerance are also part of the metabolic syndrome which also comprises an abnormal serum lipid profile, central obesity and hypertension. The metabolic syndrome can be considered to be a pre-diabetic condition and is itself linked to cardiovascular mortality. Table 1 shows the three commonly used definitions of the metabolic syndrome as per WHO, NCEPIII and IDF respectively (WHO 1999; NCEPIII 2001; Zimmet et al 2005).
Opioid substances are in common use both licit and illicit. Opiates are potent analgesics but they are also highly addictive. They are frequently prescribed for both acute and chronic pain and when used chronically, often induce opiate dependence in the user. Pain clinics regularly use narcotic agents in many of their patients. Methadone, in particular, is regularly prescribed to opiate addicts who have entered a program aimed at reducing narcotic dosage and ultimately weaning the patient off it altogether. Most men who are on chronic high doses of an opiate become hypogonadal. This was first recognized in the 1970’s when heroin addicts were found to have suppressed levels of testosterone (Brambilla et al 1977). Also suppressed were LH and FSH pointing to a probable inhibition of GnRH release.
Some boys even develop enlarged testicles and penis, armpit or pubic hair, as well as facial hair as early as age nine! Early puberty is not something to be taken lightly because it can significantly influence physical and psychological health, including an increased risk of hormone-related cancers. Precocious sexual development may also lead to emotional and behavioral issues, such as:
×