We required all of our testosterone boosters to have magnesium, but gave preference to magnesium aspartate, citrate, lactate, and chloride. These forms have been found to be more easily absorbed than magnesium oxide and sulfate. (On the other hand, it didn’t count if the supplement had magnesium stearate, which is used to make pills not stick together.)
The bones and the brain are two important tissues in humans where the primary effect of testosterone is by way of aromatization to estradiol. In the bones, estradiol accelerates ossification of cartilage into bone, leading to closure of the epiphyses and conclusion of growth. In the central nervous system, testosterone is aromatized to estradiol. Estradiol rather than testosterone serves as the most important feedback signal to the hypothalamus (especially affecting LH secretion).[115] In many mammals, prenatal or perinatal "masculinization" of the sexually dimorphic areas of the brain by estradiol derived from testosterone programs later male sexual behavior.[116]
That said, keep in mind that using leucine as a free form amino acid can be highly counterproductive as when free form amino acids are artificially administrated, they rapidly enter your circulation while disrupting insulin function, and impairing your body's glycemic control. Food-based leucine is really the ideal form that can benefit your muscles without side effects.
Infertility in men and women Infertility or a couple being unable to conceive a child can cause significant stress and unhappiness. There are numerous reasons for both male and female infertility but many ways in which medical assistance can overcome problems that people may face. Everything concerning infertility is discussed and explained here. Read now
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
There is a polymorphic CAG repeat sequence in the androgen receptor gene, which codes for a variable number of glutamine amino acids in the part of the receptor affecting gene transcription. A receptor with a short CAG sequence produces greater activity when androgens attach, and men with shorter CAG polymorphisms exhibit androgenic traits, such as preserved bone density (Zitzmann et al 2001) and prostate growth during testosterone treatment (Zitzmann et al 2003). Indirect evidence of the importance of androgens in the development of prostate cancer is provided by case control study findings of a shorter, more active CAG repeat sequence in the androgen receptor gene of patients with prostate cancer compared with controls (Hsing et al 2000, 2002).
Levels of testosterone naturally decrease with age, but exactly what level constitutes "low T," or hypogonadism, is controversial, Harvard Medical School said. Testosterone levels vary wildly, and can even differ depending on the time of day they're measured (levels tend to be lower in the evenings). The National Institutes of Health includes the following as possible symptoms of low testosterone:
Testosterone insufficiency has been associated with HIV infection in men (Dobs et al 1988). Early reports suggested that testosterone therapy may have an ameliorating effect on both depression and decreased energy in HIV infected men, even if testosterone levels were not reduced (Rabkin et al 1999; Grinspoon et al 2000; Rabkin et al 2000). Both depression and fatigue, however, are common features of HIV-positive men and may be associated with factors other than reduced levels of testosterone. The disease itself may induce depression and fatigue may be a consequence of the disease, per se, or of some of the medications used to control HIV.
In 1927, the University of Chicago's Professor of Physiologic Chemistry, Fred C. Koch, established easy access to a large source of bovine testicles — the Chicago stockyards — and recruited students willing to endure the tedious work of extracting their isolates. In that year, Koch and his student, Lemuel McGee, derived 20 mg of a substance from a supply of 40 pounds of bovine testicles that, when administered to castrated roosters, pigs and rats, remasculinized them.[179] The group of Ernst Laqueur at the University of Amsterdam purified testosterone from bovine testicles in a similar manner in 1934, but isolation of the hormone from animal tissues in amounts permitting serious study in humans was not feasible until three European pharmaceutical giants—Schering (Berlin, Germany), Organon (Oss, Netherlands) and Ciba (Basel, Switzerland)—began full-scale steroid research and development programs in the 1930s.
Both testosterone and 5α-DHT are metabolized mainly in the liver.[1][151] Approximately 50% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases, respectively.[1] An additional 40% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5α- and 5β-reductases, 3α-hydroxysteroid dehydrogenase, and 17β-HSD, in that order.[1][151][152] Androsterone and etiocholanolone are then glucuronidated and to a lesser extent sulfated similarly to testosterone.[1][151] The conjugates of testosterone and its hepatic metabolites are released from the liver into circulation and excreted in the urine and bile.[1][151][152] Only a small fraction (2%) of testosterone is excreted unchanged in the urine.[151]
Looking for ingredients that work in the realm of supplements can be like finding a needle in a haystack. Testosterone boosters, like all dietary supplements, are not approved by the Food and Drug Administration prior to marketing. This lack of oversight dates back to the 1994 Dietary Supplement Health and Education Act (DSHEA), which stipulated that purveyors of supplements weren’t required to prove the safety of their products or the veracity of what’s on the labels to the FDA before listing them for sale. Often, there isn’t a lot of scientific backing behind an ingredient, or research has been done solely on animals, not humans.

Beast Sports Nutrition - Super Test has all four of our dream ingredients: magnesium, fenugreek, longjack, and zinc. These ingredients have all been demonstrated to help increase natural testosterone levels, with plenty of scientific research to support them (done on humans too, and not just rats). By combining all four ingredients, Super Test has the best chance of helping to increase your testosterone levels, and thereby helping you gain muscle or have a more active sex life.
Low testosterone levels may contribute to decreased sex drive, erectile dysfunction, fragile bones, and other health issues. Having low testosterone levels may also indicate an underlying medical condition. See your doctor if you suspect you have low testosterone. A simple blood test is all it takes to check if your testosterone falls within the normal range.
It is now well-established that elderly men with type 2 diabetes mellitus have reduced levels of testosterone (Barrett-Connor 1992; Betancourt-Albrecht and Cunningham 2003). It is known, however, that obese men and diabetic men have reduced levels of SHBG (Barrett-Connor 1990) which could account for the lower total testosterone levels found in diabetic men. Dhindsa et al (2004) studied 103 male patients who had type 2 diabetes mellitus using free testosterone (done by equilibrium dialysis) or calculated free testosterone which takes SHBG levels into account. Of the 103 patients, 57 had free testosterone by equilibrium dialysis and of these, 14 (25%) had a free T below 0.174 nmol/L and were considered hypogonadal. Using a total testosterone of 10.4 nmol/L (300ng/dl) as the lower limit of normal 45 patients (43%) were in the hypogonadal range. They also found that LH and FSH concentrations were significantly lower in the hypogonadal group. The authors thus concluded that hypogonadotropic hypogonadism was a common finding in type 2 diabetes irrespective of glycemic control, duration of disease or the presence of complications of diabetes or obesity.
Remember that each person is unique, and each body responds differently to treatment. TT may help erectile function, low sex drive, bone marrow density, anemia, lean body mass, and/or symptoms of depression. However, there is no strong evidence that TT will help memory recall, measures of diabetes, energy, tiredness, lipid profiles, or quality of life.
Longjack, also known as Tongkat ali and pasak bumi, is a shrub hailing from Southeast Asia purporting to improve libido. It’s gaining traction in the scientific community for potentially increasing testosterone levels, and researchers at South Africa’s University of the Western Cape found that longjack improved testosterone levels and muscular strength in physically active seniors (a population with typically low testosterone).
To get your levels into the healthy range, sun exposure is the BEST way to optimize your vitamin D levels; exposing a large amount of your skin until it turns the lightest shade of pink, as near to solar noon as possible, is typically necessary to achieve adequate vitamin D production. If sun exposure is not an option, a safe tanning bed (with electronic ballasts rather than magnetic ballasts, to avoid unnecessary exposure to EMF fields) can be used.

The hormone also plays a role in sex drive, sperm production, fat distribution, red cell production, and maintenance of muscle strength and mass, according to the Mayo Clinic. For these reasons, testosterone is associated with overall health and well-being in men. One 2008 study published in the journal Frontiers of Hormone Research even linked testosterone to the prevention of osteoporosis in men.
Epidemiological data has associated low testosterone levels with atherogenic lipid parameters, including lower HDL cholesterol (Lichtenstein et al 1987; Haffner et al 1993; Van Pottelbergh et al 2003) and higher total cholesterol (Haffner et al 1993; Van Pottelbergh et al 2003), LDL cholesterol (Haffner et al 1993) and triglyceride levels (Lichtenstein et al 1987; Haffner et al 1993). Furthermore, these relationships are independent of other factors such as age, obesity and glucose levels (Haffner et al 1993; Van Pottelbergh et al 2003). Interventional trails of testosterone replacement have shown that treatment causes a decrease in total cholesterol. A recent meta-analysis of 17 randomized controlled trials confirmed this and found that the magnitude of changes was larger in trials of patients with lower baseline testosterone levels (Isidori et al 2005). The same meta-analysis found no significant overall change in LDL or HDL cholesterol levels but in trials with baseline testosterone levels greater than 10 nmol/l, there was a small reduction in HDL cholesterol with testosterone treatment.
Japanese Knotweed (a.k.a Hu Zhang or Polygonum cuspidatum) is highlighted by WebMD as needing more evidence to rate its effectiveness in a number of different areas: like treating constipation and liver or heart disease. They also warn that it can interact poorly with medications that are changed and broken down by the liver, and those that slow blood clotting (anticoagulants and antiplatelets).

A related issue is the potential use of testosterone as a coronary vasodilator and anti-anginal agent. Testosterone has been shown to act as a vasodilator of coronary arteries at physiological concentrations during angiography (Webb, McNeill et al 1999). Furthermore men given a testosterone injection prior to exercise testing showed improved performance, as assessed by ST changes compared to placebo (Rosano et al 1999; Webb, Adamson et al 1999). Administration of one to three months of testosterone treatment has also been shown to improve symptoms of angina and exercise test performance (Wu and Weng 1993; English et al 2000; Malkin, Pugh, Morris et al 2004). Longer term studies are underway. It is thought that testosterone improves angina due its vasodilatory action, which occurs independently of the androgen receptor, via blockade of L-type calcium channels at the cell membrane of the vascular smooth muscle in an action similar to the dihydropyridine calcium-channel blockers such as nifedipine (Hall et al 2006).


Testosterone levels generally peak during adolescence and early adulthood. As you get older, your testosterone level gradually declines — typically about 1 percent a year after age 30 or 40. It is important to determine in older men if a low testosterone level is simply due to the decline of normal aging or if it is due to a disease (hypogonadism).
×