This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
The effect excess testosterone has on the body depends on both age and sex. It is unlikely that adult men will develop a disorder in which they produce too much testosterone and it is often difficult to spot that an adult male has too much testosterone. More obviously, young children with too much testosterone may enter a false growth spurt and show signs of early puberty and young girls may experience abnormal changes to their genitalia. In both males and females, too much testosterone can lead to precocious puberty and result in infertility. 
Early infancy androgen effects are the least understood. In the first weeks of life for male infants, testosterone levels rise. The levels remain in a pubertal range for a few months, but usually reach the barely detectable levels of childhood by 4–7 months of age.[15][16] The function of this rise in humans is unknown. It has been theorized that brain masculinization is occurring since no significant changes have been identified in other parts of the body.[17] The male brain is masculinized by the aromatization of testosterone into estrogen, which crosses the blood–brain barrier and enters the male brain, whereas female fetuses have α-fetoprotein, which binds the estrogen so that female brains are not affected.[18]
Remember that each person is unique, and each body responds differently to treatment. TT may help erectile function, low sex drive, bone marrow density, anemia, lean body mass, and/or symptoms of depression. However, there is no strong evidence that TT will help memory recall, measures of diabetes, energy, tiredness, lipid profiles, or quality of life.
If a man's testosterone looks below the normal range, there is a good chance he could end up on hormone supplements—often indefinitely. "There is a bit of a testosterone trap," Dr. Pallais says. "Men get started on testosterone replacement and they feel better, but then it's hard to come off of it. On treatment, the body stops making testosterone. Men can often feel a big difference when they stop therapy because their body's testosterone production has not yet recovered."
As already indicated previously, testosterone levels, particularly bioavailable testosterone, fall with advancing age. This decline in testosterone availability may start to occur early in the forth decade but it usually becomes clinically manifest in the 50s and 60s. Although there is continuing debate about the best way to diagnose hypogonadism in the aging male, there appears to be a general consensus that symptomatic men with reduced levels of testosterone should be given a trial of testosterone therapy if there is no contraindication to do so (Bain et al 2007).
A: According to the NIH, normal values for testosterone levels in men can range from 300 to 1,200ng/dL. There can be many different causes of low testosterone including age, diseases, accidents, and medications. Symptoms of low testosterone may include: loss of sex drive, erectile dysfunction, depressed mood, and difficulty concentrating. Low testosterone levels may also bring around body changes including: hair loss, decrease in blood cells possibly leading to anemia, fragile bones, and a decrease in muscle mass. There are different testosterone replacement therapies including patches, such as Androderm; gels, such as Androgel and Testim; and injections, such as testosterone cypionate. Only your health care provider can decide if and what kind of testosterone replacement therapy is appropriate for you. Testosterone replacement therapy is not right for everyone. Patient with certain prostate issues or breast cancer should not take testosterone. For more specific information, consult with your doctor for guidance based on your health status and current medications, particularly before taking any action. Kristen Dore, PharmD
Testosterone is more than a “male sex hormone”. It is an important contributor to the robust metabolic functioning of multiple bodily systems. The abuse of anabolic steroids by athletes over the years has been one of the major detractors from the investigation and treatment of clinical states that could be caused by or related to male hypogonadism. The unwarranted fear that testosterone therapy would induce prostate cancer has also deterred physicians form pursuing more aggressively the possibility of hypogonadism in symptomatic male patients. In addition to these two mythologies, many physicians believe that testosterone is bad for the male heart. The classical anabolic agents, 17-alkylated steroids, are, indeed, potentially harmful to the liver, to insulin action to lipid metabolism. These substances, however, are not testosterone, which has none of these adverse effects. The current evidence, in fact, strongly suggests that testosterone may be cardioprotective. There is virtually no evidence to implicate testosterone as a cause of prostate cancer. It may exacerbate an existing prostate cancer, although the evidence is flimsy, but it does not likely cause the cancer in the first place. Testosterone has stimulatory effects on bones, muscles, erythropoietin, libido, mood and cognition centres in the brain, penile erection. It is reduced in metabolic syndrome and diabetes and therapy with testosterone in these conditions may provide amelioration by lowering LDL cholesterol, blood sugar, glycated hemoglobin and insulin resistance. The best measure is bio-available testosterone which is the fraction of testosterone not bound to sex hormone binding globulin. Several forms of testosterone administration are available making compliance much less of an issue with testosterone replacement therapy.

This paper will aim to review the current evidence of clinical effects of testosterone treatment within an aging male population. As with any other clinical intervention a decision to treat patients with testosterone requires a balance of risk versus benefit. We shall try to facilitate this by examining the effects of testosterone on the various symptoms and organs involved.
The rise in testosterone levels during competition predicted aggression in males but not in females.[86] Subjects who interacted with hand guns and an experimental game showed rise in testosterone and aggression.[87] Natural selection might have evolved males to be more sensitive to competitive and status challenge situations and that the interacting roles of testosterone are the essential ingredient for aggressive behaviour in these situations.[88] Testosterone produces aggression by activating subcortical areas in the brain, which may also be inhibited or suppressed by social norms or familial situations while still manifesting in diverse intensities and ways through thoughts, anger, verbal aggression, competition, dominance and physical violence.[89] Testosterone mediates attraction to cruel and violent cues in men by promoting extended viewing of violent stimuli.[90] Testosterone specific structural brain characteristic can predict aggressive behaviour in individuals.[91]
^ Jump up to: a b Travison TG, Vesper HW, Orwoll E, Wu F, Kaufman JM, Wang Y, Lapauw B, Fiers T, Matsumoto AM, Bhasin S (April 2017). "Harmonized Reference Ranges for Circulating Testosterone Levels in Men of Four Cohort Studies in the United States and Europe". The Journal of Clinical Endocrinology and Metabolism. 102 (4): 1161–1173. doi:10.1210/jc.2016-2935. PMC 5460736. PMID 28324103.
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
Tribulus terrestris is an ingredient commonly presented as improving testosterone levels, but has not been found to be more effective than a placebo or possess any testosterone increasing properties. WebMD cautions that it interferes with Lithium and diabetes medications, and in general, not enough is known about tribulus terrestris to recommend a dosage for anyone.

Testosterone is an important hormone for both men and women. Even though it’s often associated with a man’s libido, testosterone occurs in both sexes from birth. In females, it plays a part in sexual drive, energy, and physical strength. In males, it stimulates the beginning of sexual development and helps maintain a man’s health throughout his life.


Cross-sectional studies conducted at the time of diagnosis of BPH have failed to show consistent differences in testosterone levels between patients and controls. A prospective study also failed to demonstrate a correlation between testosterone and the development of BPH (Gann et al 1995). Clinical trials have shown that testosterone treatment of hypogonadal men does cause growth of the prostate, but only to the size seen in normal men, and also causes a small increase in prostate specific antigen (PSA) within the normal range (Rhoden and Morgentaler 2005). Despite growth of the prostate a number of studies have failed to detect any adverse effects on symptoms of urinary obstruction or physiological measurements such as flow rates and residual volumes (Snyder et al 1999; Kenny et al 2000, 2001). Despite the lack of evidence linking symptoms of BPH to testosterone treatment, it remains important to monitor for any new or deteriorating problems when commencing patients on testosterone treatment, as the small growth of prostate tissue may adversely affect a certain subset of individuals.
Lets touch on these individually. Gluten has been shown to increase prolactin levels in male mice (48 & 49). Increased prolactin levels in males leads to all sorts of horrible things: Man Boobs (50), High inflammation (51), and most importantly, higher prolactin levels have been shown to be testosterone lowering and lead to shrinking of the testicle (52).
My favorite overall tool to manage stress is EFT (Emotional Freedom Technique), which is like acupuncture without the needles. It's a handy, free tool for unloading emotional baggage quickly and painlessly, and so easy that even children can learn it. Other common stress-reduction tools with a high success rate include prayer, meditation, laughter and yoga, for example. Learning relaxation skills, such as deep breathing and positive visualization, which is the "language" of the subconscious.

The unsexy truth is that increasing T naturally simply comes down to making some long-term changes in your diet and lifestyle. As you’ll see, what I did to increase T largely boils down to eating better, exercising smarter, and getting more sleep. That’s pretty much it. But as with most things in life, the devil is in the details, so I’ll share with you exactly what I did and provide research that explains why the things I did helped boost my testosterone.
Present in much greater levels in men than women, testosterone initiates the development of the male internal and external reproductive organs during foetal development and is essential for the production of sperm in adult life. This hormone also signals the body to make new blood cells, ensures that muscles and bones stay strong during and after puberty and enhances libido both in men and women. Testosterone is linked to many of the changes seen in boys during puberty (including an increase in height, body and pubic hair growth, enlargement of the penis, testes and prostate gland, and changes in sexual and aggressive behaviour). It also regulates the secretion of luteinising hormone and follicle stimulating hormone. To effect these changes, testosterone is often converted into another androgen called dihydrotestosterone. 
×