Let’s do a quick review of what I shared in the introduction to this series. August of last year was a tough month for me, primarily because of a huge and grueling project we were in the midst of here on the site. I was stressed out and my sleeping, healthy eating habits, and workout regimen all suffered. At the end of the month I got my testosterone levels tested and found that my total T was 383 ng/dL and my free T was 7.2 pg/mL – close to the average for an 85-100-year-old man.
Steven Doerr, MD, is a U.S. board-certified Emergency Medicine Physician. Dr. Doerr received his undergraduate degree in Spanish from the University of Colorado at Boulder. He graduated with his Medical Degree from the University Of Colorado Health Sciences Center in Denver, Colorado in 1998 and completed his residency training in Emergency Medicine from Denver Health Medical Center in Denver, Colorado in 2002, where he also served as Chief Resident.
Dr. Anthony’s Notes: Vitamin D has about 100 other beneficial body functions outside of it's impact on testosterone. Make sure you take the active Vitamin D3 (not D2 – from plant sources!) It’s also advisable to get 20 minutes of sunshine daily (weather permitting) – without sunscreen. Verdict: this is one of the natural testosterone supplements that work. Best Food Sources of Vitamin D3: Wild Alaskan Salmon (#1), Sardines, Eggs How To Take Vitamin D3: Using 3000-5000IU of Vitamin D3 per day is a good safe, research supported dose. Your physician can also test your blood for D3 levels for more precise monitoring.
As blood levels of testosterone increase, this feeds back to suppress the production of gonadotrophin-releasing hormone from the hypothalamus which, in turn, suppresses production of luteinising hormone by the pituitary gland. Levels of testosterone begin to fall as a result, so negative feedback decreases and the hypothalamus resumes secretion of gonadotrophin-releasing hormone. 
Such sort of injuries varies in severity and extent of damage markedly from one person to the other and withdrawal of the drug/supplement coupled with proper medical attention suffice in terms of alleviating the symptoms.[8,12] This was observed in the present case. However, the liver injury observed here may not be confidently linked to product consumption as the subject later reported that the following recovery he consumed two more courses of the booster with no side effects. Tests performed following hospital discharge, and repeated use of the product showed AST and ALT to be slightly high, whereas the rest of the blood parameters tested appeared to be normal. The AST/ALT ratio is considered to be a very important parameter for the evaluation of liver diseases, such as non-alcoholic fatty liver disease,[13] though it is rarely considered alone. Overall, the evidence was inconclusive in the present work in terms of linking the use of a testosterone booster with liver injury. However, even though a single case report cannot establish causality with statistical power.[13] Further research on the usage of a commercial testosterone booster within large populations for a long period is necessary to investigate whether the symptoms shown in the present case were significantly present in other athletes consuming the same commercial product or not. To guarantee an optimal outcome with no severe side effects, further research is warranted to confirm the present findings and determine whether the effects observed in this case report would be statistically significant in larger samples.
This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
A related issue is the potential use of testosterone as a coronary vasodilator and anti-anginal agent. Testosterone has been shown to act as a vasodilator of coronary arteries at physiological concentrations during angiography (Webb, McNeill et al 1999). Furthermore men given a testosterone injection prior to exercise testing showed improved performance, as assessed by ST changes compared to placebo (Rosano et al 1999; Webb, Adamson et al 1999). Administration of one to three months of testosterone treatment has also been shown to improve symptoms of angina and exercise test performance (Wu and Weng 1993; English et al 2000; Malkin, Pugh, Morris et al 2004). Longer term studies are underway. It is thought that testosterone improves angina due its vasodilatory action, which occurs independently of the androgen receptor, via blockade of L-type calcium channels at the cell membrane of the vascular smooth muscle in an action similar to the dihydropyridine calcium-channel blockers such as nifedipine (Hall et al 2006).

We’ll be honest. Testosterone boosters don’t really boost. The best testosterone booster is like taking a multivitamin with extra herbs that might slightly and temporarily increase your testosterone levels. Like all supplements, finding the right testosterone booster means wading into a sea of ingredients, all promising to help. Of 133 testosterone boosters, we found only one with the right ingredients to help raise your testosterone levels: Beast Sports Nutrition - Super Test ($45.88 for 180 capsules, or $2.04 per day).
A: There are no over-the-counter products approved by the U.S. Food and Drug Administration (FDA) to increase testosterone levels. There are several prescription medication options available. Please consult with your health care provider in regards to your testosterone levels and to determine which treatment option best meets your individual needs. For more specific information, consult with your doctor or pharmacist for guidance based on your health status and current medications, particularly before taking any action. Kristen Dore, PharmD
The hormone also plays a role in sex drive, sperm production, fat distribution, red cell production, and maintenance of muscle strength and mass, according to the Mayo Clinic. For these reasons, testosterone is associated with overall health and well-being in men. One 2008 study published in the journal Frontiers of Hormone Research even linked testosterone to the prevention of osteoporosis in men.
My favorite overall tool to manage stress is EFT (Emotional Freedom Technique), which is like acupuncture without the needles. It's a handy, free tool for unloading emotional baggage quickly and painlessly, and so easy that even children can learn it. Other common stress-reduction tools with a high success rate include prayer, meditation, laughter and yoga, for example. Learning relaxation skills, such as deep breathing and positive visualization, which is the "language" of the subconscious.

Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
The science backs up the soldier’s self discovery, in fact, exposure to radiation (whether it’s from an army radar or the cell phone in your pocket, or the wifi router in your house) has been shown to lower sperm quality, fertility and testosterone. This is true not only for military personnel (88, 89,90) but all males living in a modern world (91).

Aromatase inhibitors can boost testosterone on their own, but they can also complement other testosterone boosters. If you take a supplement that increases testosterone without inhibiting the aromatase enzyme (through hypothalamic stimulation, for instance), you may find yourself with more estradiol than you need, a situation that taking an aromatase inhibitor may remedy.
Testosterone has two major effects on bones: (a) through conversion to estradiol by way of the enzyme, aromatase, testosterone inhibits osteoclastic activity and hence bone resorption; and (b) through conversion to DHT via 5-α-reductase, it stimulates osteoblastic activity and so enhances the laying down of bone (Tivesten et al 2004; Davey and Morris 2005). Hypogonadal men are at risk for the development of osteopenia or osteoporosis and hence for subsequent fracture (Fink et al 2006). About one-third of all osteoporotic hip fractures occur in men and the risk of any osteoporotic fracture in men over 50 is as high as 25 percent (Seeman 1997; Adler 2006). Although treatment with testosterone in hypogonadal men increases bone mineral density (Katznelson et al 1996), it has not yet been established that this results in a reduction in fracture rate.
When you’re under stress (be it from lack of sleep, workplace stress, emotional stress, stress from a bad diet, overtraining etc.), your body releases cortisol. Cortisol blunts the effects of testosterone (47), which makes sense from an evolutionary point of view – if we were stressed as cavemen chances are it was a life or death situation – not running late to a meeting - in this state (i.e. running from a lion) the body wouldn’t care if you couldn’t get it up, there was more to worry about!
Using steroids eventually trains your body to realize that it doesn’t have to produce as much testosterone to reach its equilibrium, so to reach the same highs you’ll need to take more steroids, and when you stop taking them, your body will need to readjust — you’ll be living with low testosterone for a while (and you’ll need to see a doctor if your body doesn’t readjust on its own). Forcing your body to stay above your natural testosterone, even if you’re naturally low, can create this kind of dependency which ultimately decreases the amount of testosterone your body will produce on its own.
It is the intent of AMB WELLNESS PARTNERS LLC (“Sponsor") to operate products through this Website consistent with the work of Dr. Anthony Balduzzi, NMD. However, Sponsor is not a healthcare practitioner or provider. To the extent that any information is provided through this Website, it is for general informational purposes only and is not intended to constitute or substitute for (i) medical advice or counseling, (ii) the practice of medicine including but not limited to psychiatry, psychology, psychotherapy or the provision of health care diagnosis or treatment, (iii) the creation of a physician-patient or clinical relationship, or (iv) an endorsement, a recommendation or a sponsorship of any third party, product or service by the Sponsor or any of the Sponsor's related companies, agents, employees, consultants or service providers. If you have or suspect that you have a medical problem, contact your health care provider. Information and statements regarding dietary supplements available on this Website have not been evaluated by the Food and Drug Administration and are not intended to diagnose, treat, cure, or prevent any disease. FTC LEGAL DISCLAIMER: Results are atypical, and your results may vary. Testimonials are not purported to be typical results, and your weight loss, if any, may vary. Please see our full FTC Legal Disclaimer for a comprehensive disclaimer of risks of use, typical results, testimonials, & other legal items. READ FULL DISCLAIMER & TERMS.
Osteoporosis refers to pathological loss of bone density and strength. It is an important condition due to its prevalence and association with bone fractures; most commonly of the hip, vertebra and forearm. Men are relatively protected from the development of osteoporosis by a higher peak bone mass compared with women (Campion and Maricic 2003). Furthermore, women lose bone at an accelerated rate immediately following the menopause. Nevertheless, men start to lose bone mass during early adult life and experience an increase in the rate of bone loss with age (Scopacasa et al 2002). Women of a given age have a higher prevalence of osteoporosis in comparison to men but the prevalence increases with age in both sexes. As a result, men have a lower incidence of osteoporotic fractures than women of a given age but the gap between the sexes narrows with advancing age (Chang et al 2004) and there is evidence that hip fractures in men are associated with greater mortality than in women (Campion and Maricic 2003).

A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.'s editorial policy, editorial process and privacy policy. A.D.A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www.hon.ch).


A number of epidemiological studies have found that bone mineral density in the aging male population is positively associated with endogenous androgen levels (Murphy et al 1993; Ongphiphadhanakul et al 1995; Rucker et al 2004). Testosterone levels in young men have been shown to correlate with bone size, indicating a role in determination of peak bone mass and protection from future osteoporosis (Lorentzon et al 2005). Male hypogonadism has been shown to be a risk factor for hip fracture (Jackson et al 1992) and a recent study showed a high prevalence of hypogonadism in a group of male patients with average age 75 years presenting with minimal trauma fractures compared to stroke victims who acted as controls (Leifke et al 2005). Estrogen is a well known determinant of bone density in women and some investigators have found serum estrogen to be a strong determinant of male bone density (Khosla et al 1998; Khosla et al 2001). Serum estrogen was also found to correlate better than testosterone with peak bone mass (Khosla et al 2001) but this is in contradiction of a more recent study showing a negative correlation of estrogen with peak bone size (Lorentzon et al 2005). Men with aromatase deficiency (Carani et al 1997) or defunctioning estrogen receptor mutations (Smith et al 1994) have been found to have abnormally low bone density despite normal or high testosterone levels which further emphasizes the important influence of estrogen on male bone density.

Such sort of injuries varies in severity and extent of damage markedly from one person to the other and withdrawal of the drug/supplement coupled with proper medical attention suffice in terms of alleviating the symptoms.[8,12] This was observed in the present case. However, the liver injury observed here may not be confidently linked to product consumption as the subject later reported that the following recovery he consumed two more courses of the booster with no side effects. Tests performed following hospital discharge, and repeated use of the product showed AST and ALT to be slightly high, whereas the rest of the blood parameters tested appeared to be normal. The AST/ALT ratio is considered to be a very important parameter for the evaluation of liver diseases, such as non-alcoholic fatty liver disease,[13] though it is rarely considered alone. Overall, the evidence was inconclusive in the present work in terms of linking the use of a testosterone booster with liver injury. However, even though a single case report cannot establish causality with statistical power.[13] Further research on the usage of a commercial testosterone booster within large populations for a long period is necessary to investigate whether the symptoms shown in the present case were significantly present in other athletes consuming the same commercial product or not. To guarantee an optimal outcome with no severe side effects, further research is warranted to confirm the present findings and determine whether the effects observed in this case report would be statistically significant in larger samples.
Vitamin D supplementation may potentially boost testosterone levels, but further research is needed to determine if it really has an effect on the testosterone levels of young people and athletes. The truth is likely similar to zinc and magnesium — being in a deficient state causes your testosterone levels to drop below baseline, and supplementing it just takes you right back to baseline (but not any higher).
Once your elevate testosterone levels, you will also sharpen your focus, enhance sports performance, and enjoy enormous competitive spirit. You will also soon notice that the lack of motivation is no longer your problem. Being highly motivated and aggressive due to the action of testosterone boosters, you will experience better muscle gain. Whether you are a novice or a professional sportsman, you will quickly reach your sports goals.

Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
Sportsmen are permitted to use the boosters to trigger the mechanism of testosterone synthesis in the body. These products won a wide popularity among the sportsmen. The matter is that the supplements work by substantially enhancing sports performance, reviving strength, boosting endurance, coping with excessive stress levels, and decreasing time necessary for recovery after exhausting exercises.
In many of the studies we found, those who saw the most improvement in health, testosterone, or muscle gain were those with existing nutrient or vitamin deficiencies. This means that some gains may be due more to dietary changes and generally restoring nutrient and vitamin levels than any one magic ingredient, but also that making sure your diet includes healthy amounts of nutrients should be your first step.

The natural production of DHEA is also age-dependent. Prior to puberty, the body produces very little DHEA. Production of this prohormone peaks during your late 20’s or early 30’s. With age, DHEA production begins to decline. The adrenal glands also manufacture the stress hormone cortisol, which is in direct competition with DHEA for production because they use the same hormonal substrate known as pregnenolone. Chronic stress basically causes excessive cortisol levels and impairs DHEA production, which is why stress is another factor for low testosterone levels.

How do you boost testosterone naturally? Testosterone is a male sex hormone. Low levels can cause changes to the distribution of body fat and muscle strength. Testosterone reduces with age, but people can boost it with lifestyle changes, including diet and exercise. Adequate sleep, nutritional supplements, and stress reduction may also help. Learn more here. Read now
We required all of our testosterone boosters to have magnesium, but gave preference to magnesium aspartate, citrate, lactate, and chloride. These forms have been found to be more easily absorbed than magnesium oxide and sulfate. (On the other hand, it didn’t count if the supplement had magnesium stearate, which is used to make pills not stick together.)
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.

The reliable measurement of serum free testosterone requires equilibrium dialysis. This is not appropriate for clinical use as it is very time consuming and therefore expensive. The amount of bioavailable testosterone can be measured as a percentage of the total testosterone after precipitation of the SHBG bound fraction using ammonium sulphate. The bioavailable testosterone is then calculated from the total testosterone level. This method has an excellent correlation with free testosterone (Tremblay and Dube 1974) but is not widely available for clinical use. In most clinical situations the available tests are total testosterone and SHBG which are both easily and reliably measured. Total testosterone is appropriate for the diagnosis of overt male hypogonadism where testosterone levels are very low and also in excluding hypogonadism in patients with normal/high-normal testosterone levels. With increasing age, a greater number of men have total testosterone levels just below the normal range or in the low-normal range. In these patients total testosterone can be an unreliable indicator of hypogonadal status. There are a number of formulae that calculate an estimated bioavailable or free testosterone level using the SHBG and total testosterone levels. Some of these have been shown to correlate well with laboratory measures and there is evidence that they more reliably indicate hypogonadism than total testosterone in cases of borderline biochemical hypogonadism (Vermeulen et al 1971; Morris et al 2004). It is important that such tests are validated for use in patient populations relevant to the patient under consideration.

Watch out for ingredients that interfere with blood clotting If you are taking any kind of blood medication, take aspirin or ibuprofen, or have any kind of blood-related condition, you’ll want to consult your doctor before taking any of these supplements. Fenugreek, Forskolin, and Acetyl-L-carnitine are just a few of the ingredients that can make these situations worse and increase your chances of bruising and bleeding.
The diagnosis of late-onset hypogonadism requires the combination of low serum testosterone levels with symptoms of hypogonadism. Questionnaires are available which check for the symptoms of hypogonadism. These have been validated for the assessment of aging patients with hypogonadism (Morley et al 2000; Moore et al 2004) but have a low specificity. In view of the overlap in symptoms between hypogonadism, aging and other medical conditions it is wise to use a formal method of symptom assessment which can be used to monitor the effects of testosterone replacement.

I know the experiment didn’t simply bring me back to my pre-August levels because of the fact that when I learned that the original test I took can sometimes overestimate your T levels, I took a more accurate test around four months after the start of the experiment (I’ve continued the lifestyle changes made during the experiment) and my total T had gone up again to 826.9 ng/dL.
We use cookies and similar technologies to improve your browsing experience, personalize content and offers, show targeted ads, analyze traffic, and better understand you. We may share your information with third-party partners for marketing purposes. To learn more and make choices about data use, visit our Advertising Policy and Privacy Policy. By clicking “Accept and Continue” below, (1) you consent to these activities unless and until you withdraw your consent using our rights request form, and (2) you consent to allow your data to be transferred, processed, and stored in the United States.
×