The reasons for considering such therapy become evident from the many associations, indicated above, that reduced testosterone has with a variety of both physiological functions (bone metabolism, muscle mass, cognitive function, libido, erectile function) and pathophysiological states (metabolic syndrome, diabetes mellitus, obesity, insulin resistance, autoimmune disease). Although a definitive long-term, large scale placebo-controlled double-blind study of testosterone therapy in the aging male has not yet been carried out, multiple shorter-term trials have suggested improvement by testosterone with a resultant enhancement of muscle mass, bone density, libido, erectile function, mood, motivation and general sense of well-being.
Testosterone may prove to be an effective treatment in female sexual arousal disorders,[52] and is available as a dermal patch. There is no FDA approved androgen preparation for the treatment of androgen insufficiency; however, it has been used off-label to treat low libido and sexual dysfunction in older women. Testosterone may be a treatment for postmenopausal women as long as they are effectively estrogenized.[52]

Testosterone retains nitrogen and is an essential ingredient in the development and maintenance of muscle mass (Sinha-Hikim et al 2006). With a diminution in testosterone, muscle mass diminishes as does strength. Weakness and fatigue result. A number of studies have demonstrated the ability of testosterone to restore lean body mass (muscle) in hypogonadal men, while at the same time causing a reduction in fat mass (Wang et al 2004). Treatment of hypogonadal men with testosterone results in improvement in overall physical performance as well as strength as assessed by, eg, hand grip power (Page 2005). Because of decreased muscle strength and impaired balance, older hypogonadal men are susceptible to falling and since they may already be osteopenic or osteoporotic as a consequence of hypogonadism, they are at increased risk for fracture as a result of the fall (Szulc et al 2003). Men with low levels of testosterone as in androgen deprivation therapy for prostate cancer, have a significant decrease in lean body mass and hemoglobin, while at the same time they experience an increase in weight, body fat and body mass index (Smith et al 2002). Treatment of frail hypogonadal men with testosterone, therefore, can result in changes in muscle gene expression, increased muscle mass, improvements in strength, power and endurance and improved physical function.

Hooper, D. R., Kraemer, W. J., Saenz, C., Schill, K. E., Focht, B. C., Volek, J. S. … Maresh, C. M. (2017, July). The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition [Abstract]. European Journal of Applied Physiology, 117(7), 1349–1357. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28470410

Every effort has been made to ensure that the information provided by on this page is accurate, up-to-date, and complete, but no guarantee is made to that effect. Drug information contained herein may be time sensitive. The information on this page has been compiled for use by healthcare practitioners and consumers in the United States and therefore neither Everyday Health or its licensor warrant that uses outside of the United States are appropriate, unless specifically indicated otherwise. Neither Everyday Health nor its licensors endorse drugs, diagnose patients or recommend therapy. The drug information above is an informational resource designed to assist licensed healthcare practitioners in caring for their patients and/or to serve consumers viewing this service as a supplement to, and not a substitute for, the expertise, skill, knowledge and judgment of healthcare practitioners. The absence of a warning for a given drug or drug combination in no way should be construed to indicate that the drug or combination is safe, effective or appropriate for any given patient. Neither Everyday Health nor its licensor assume any responsibility for any aspect of healthcare administered with the aid of the information provided. The information contained herein is not intended to cover all possible uses, directions, precautions, warnings, drug interactions, allergic reactions, or adverse effects. If you have any questions about the drugs you are taking, check with your doctor, nurse or pharmacist.
The largest amounts of testosterone (>95%) are produced by the testes in men,[2] while the adrenal glands account for most of the remainder. Testosterone is also synthesized in far smaller total quantities in women by the adrenal glands, thecal cells of the ovaries, and, during pregnancy, by the placenta.[126] In the testes, testosterone is produced by the Leydig cells.[127] The male generative glands also contain Sertoli cells, which require testosterone for spermatogenesis. Like most hormones, testosterone is supplied to target tissues in the blood where much of it is transported bound to a specific plasma protein, sex hormone-binding globulin (SHBG).
Intracoronary artery infusion of testosterone causes significant coronary artery dilatation and not constriction as previously thought (Webb et al 1999). When degree of coronary obstruction is assessed by angiography, there is a direct relationship between degree of coronary artery narrowing and reduced testosterone levels (Phillips et al 1994). Men with low testosterone levels have been observed to have: premature atherosclerosis, increased visceral adipose tissue, hyperinsulinemia, and other risk factors for myocardial infarction (Phillips 2005). Insulin resistance has been shown to be associated with a decrease in Leydig cell secretion of testosterone (Pitteloud et al 2005). Muller and colleagues suggest that low endogenous total testosterone and SHBG levels increase the risk of metabolic syndrome in aging and aged men. They demonstrated that low levels of testosterone are related to lower insulin sensitivity and higher fasting insulin levels (Muller et al 2005). These authors speculate that testosterone might play a protective role in the development of metabolic syndrome, insulin resistance, diabetes mellitus and cardiovascular disease in aging men.

The reason I started the experiment at that point is because I know a lot of guys who live my last-August lifestyle all the time, and I wanted to see what would happen to an “average” guy who turned things around. At the same time, there was no “normal” time in my life which would have been better for me to start the experiment. My stress level and diet fluctuates throughout the year anyway, so at any point, factors in my current lifestyle would have influenced the results. I wanted to begin at “ground zero.”
Studies also show a consistent negative correlation of testosterone with blood pressure (Barrett-Connor and Khaw 1988; Khaw and Barrett-Connor 1988; Svartberg, von Muhlen, Schirmer et al 2004). Data specific to the ageing male population suggests that this relationship is particularly powerful for systolic hypertension (Fogari et al 2005). Interventional trials have not found a significant effect of testosterone replacement on blood pressure (Kapoor et al 2006).
The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.
Japanese Knotweed (a.k.a Hu Zhang or Polygonum cuspidatum) is highlighted by WebMD as needing more evidence to rate its effectiveness in a number of different areas: like treating constipation and liver or heart disease. They also warn that it can interact poorly with medications that are changed and broken down by the liver, and those that slow blood clotting (anticoagulants and antiplatelets).
Mínguez-Alarcón, L., Chavarro, J. E., Mendiola, J., Roca, M., Tanrikut, C., Vioque, J., ... Torres-Cantero, A. M. (2017, March–April). Fatty acid intake in relation to reproductive hormones and testicular volume among young healthy men [Abstract]. Asian Journal of Andrology, 19(2), 184–190. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27834316
Hypogonadism is a disease in which the body is unable to produce normal amounts of testosterone due to a problem with the testicles or with the pituitary gland that controls the testicles. Testosterone replacement therapy can improve the signs and symptoms of low testosterone in these men. Doctors may prescribe testosterone as injections, pellets, patches or gels.
×