A blood test is the only way to diagnose a low testosterone level or a reduction in the bioavailability of testosterone. Some men have a lower than normal testosterone level without signs or symptoms. For most men, no treatment is needed. But for some others, very low testosterone levels lead to a condition in which bones become weak and brittle (osteoporosis). For others, low testosterone might cause changes in sexual function, sleep patterns, emotions and the body.

Before assessing the evidence of testosterone’s action in the aging male it is important to note certain methodological considerations which are common to the interpretation of any clinical trial of testosterone replacement. Many interventional trials of the effects of testosterone on human health and disease have been conducted. There is considerable heterogenicity in terms of study design and these differences have a potential to significantly affect the results seen in various studies. Gonadal status at baseline and the testosterone level produced by testosterone treatment in the study are of particular importance because the effects of altering testosterone from subphysiological to physiological levels may be different from those of altering physiological levels to supraphysiological. Another important factor is the length of treatment. Randomised controlled trials of testosterone have ranged from one to thirty-six months in duration (Isidori et al 2005) although some uncontrolled studies have lasted up to 42 months. Many effects of testosterone are thought to fully develop in the first few months of treatment but effects on bone, for example, have been shown to continue over two years or more (Snyder et al 2000; Wang, Cunningham et al 2004).
Testosterone was first used as a clinical drug as early as 1937, but with little understanding of its mechanisms. The hormone is now widely prescribed to men whose bodies naturally produce low levels. But the levels at which testosterone deficiency become medically relevant still aren’t well understood. Normal testosterone production varies widely in men, so it’s difficult to know what levels have medical significance. The hormone’s mechanisms of action are also unclear.
Some of the effects of testosterone treatment are well recognised and it seems clear that testosterone treatment for aging hypogonadal men can be expected to increase lean body mass, decrease visceral fat mass, increase bone mineral density and decrease total cholesterol. Beneficial effects have been seen in many trials on other parameters such as glycemic control in diabetes, erectile dysfunction, cardiovascular risk factors, angina, mood and cognition. These potentially important effects require confirmation in larger clinical trials. Indeed, it is apparent that longer duration randomized controlled trials of testosterone treatment in large numbers of men are needed to confirm the effects of testosterone on many aspects of aging male health including cardiovascular health, psychiatric health, prostate cancer and functional capacity. In the absence of such studies, it is necessary to balance risk and benefit on the best available data. At the present time the data supports the treatment of hypogonadal men with testosterone to normalize testosterone levels and improve symptoms. Most men with hypogonadism do not have a contraindication to treatment, but it is important to monitor for adverse consequences including prostate complications and polycythemia.
No one will argue with the well-established fact that the dramatic lows of testosterone as seen in castration or other significant primary testicular disturbances such as those induced by chemotherapy, radiation therapy, congenital problems, or as seen in secondary testicular insufficiency (eg, large compressive pituitary or hypothalamic tumors) produce dramatic signs and symptoms of testosterone deficiency that require testosterone replacement therapy. Less clear, or at least more controversial, is the necessity of treating the gentler reduction of testosterone seen in the aging process.
Ashwagandha is sometimes included in testosterone supplements because of the hypothesis that it improves fertility. However, we couldn’t find sufficient evidence to support this claim (at best, one study found that ashwagandha might improve cardiorespiratory endurance). WebMD advocates caution when taking this herb, as it may interact with immunosuppressants, sedative medications, and thyroid hormone medications.
A: Testosterone products can improve a male's muscle strength and create a more lean body mass. Typically, these effects are not noticed within the first two weeks of therapy, but it is possible that he is more sensitive and responds well to the therapy. Some of the other more common side effects of testosterone patches are headache, depression, rash, changes in libido, acne, male pattern baldness, and increased cholesterol levels. This is not a complete list of the side effects associated with testosterone patches. Megan Uehara, PharmD
In addition to its role as a natural hormone, testosterone is used as a medication, for instance in the treatment of low testosterone levels in men and breast cancer in women.[10] Since testosterone levels decrease as men age, testosterone is sometimes used in older men to counteract this deficiency. It is also used illicitly to enhance physique and performance, for instance in athletes.
NaturalHealth-Supplements.com brings you herbal remedies for your daily health needs. We provide you quality natural health care products. All formulations are 100% natural and safe. It is our goal to offer premium quality herbal supplements and products with best prices and service. Quick dispatch and shipping and unbeatable aftersales care mean you can buy with confidence.
For men with low blood testosterone levels, the benefits of hormone replacement therapy usually outweigh potential risks. However, for most other men it's a shared decision with your doctor. It offers men who feel lousy a chance to feel better, but that quick fix could distract attention from unknown long-term hazards. "I can't tell you for certain that this raises your personal risk of heart problems and prostate cancer, or that it doesn't," Dr. Pallais says.

Disclaimer. We do not claim that we have got the approval from Food and Drug Administration when offering our products and services on this website. We do not try to position the testosterone booster supplements the information on which we give on this website as the professional treatment alternative. Also, we do not appeal to the users to practice self-treatment by using the content here. We only publish the content that the authors provide to us. Therefore, these articles may not express our opinion, only the opinion of the article writers. In addition, take into consideration that the content writers are not the healthcare practitioners. Hence, it follows that the writers’ opinions should not be perceived as medical advice. We emphasize that the diet pills intake should be a decision taken based on the recommendations of the real healthcare practitioner since only the doctor can make a diagnosis and prescribe any treatment. We cooperate with the affiliated websites which can publish their content on this website for advertising purposes. Consequently, we do not have any bearing upon trademarks, service marks, logos, and brand names that come from the affiliated websites. Moreover, the content provided by the advertising partners is subject to amendments and deletion at the content owners’ own discretion.
Vitamin D, a steroid hormone, is essential for the healthy development of the nucleus of the sperm cell, and helps maintain semen quality and sperm count. Vitamin D also increases levels of testosterone, which may boost libido. In one study, overweight men who were given vitamin D supplements had a significant increase in testosterone levels after one year.5
Ghlissi, Z., Atheymen, R., Boujbiha, M. A., Sahnoun, Z., Makni Ayedi, F., Zeghal, K., ... Hakim, A. (2013, December). Antioxidant and androgenic effects of dietary ginger on reproductive function of male diabetic rats [Abstract]. International Journal of Food Sciences and Nutrition, 64 (8), 974–978. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23862759
Transdermal preparations of testosterone utilize the fact that the skin readily absorbs steroid hormones. Initial transdermal preparations took the form of scrotal patches with testosterone loaded on to a membranous patch. Absorption from the scrotal skin was particularly good and physiological levels of testosterone with diurnal variation were reliably attained. The scrotal patches are now rarely used because they require regular shaving or clipping of scrotal hair and because they produce rather high levels of dihydrotestosterone compared to testosterone (Behre et al 1999). Subsequently, non-scrotal patches were developed but the absorptive capacity of non-scrotal skin is much lower, so these patches contain additional chemicals which enhance absorption. The non-scrotal skin patches produce physiological testosterone levels without supraphysiological dihydrotestosterone levels. Unfortunately, the patches produce a high rate of local skin reactions often leading to discontinuation (Parker and Armitage 1999). In the last few years, transdermal testosterone gel preparations have become available. These require daily application by patients and produce steady state physiological testosterone levels within a few days in most patients (Swerdloff et al 2000; Steidle et al 2003). The advantages compared with testosterone patches include invisibility, reduced skin irritation and the ability to adjust dosage, but concerns about transfer to women and children on close skin contact necessitate showering after application or coverage with clothes.
While testosterone stimulates a man’s sex drive, it also aids in achieving and maintaining an erection. Testosterone alone doesn’t cause an erection, but it stimulates receptors in the brain to produce nitric oxide. Nitric oxide is a molecule that helps trigger a series of chemical reactions necessary for an erection to occur. When testosterone levels are too low, a man may have difficulty achieving an erection prior to sex or having spontaneous erections (for example, during sleep).
Testosterone retains nitrogen and is an essential ingredient in the development and maintenance of muscle mass (Sinha-Hikim et al 2006). With a diminution in testosterone, muscle mass diminishes as does strength. Weakness and fatigue result. A number of studies have demonstrated the ability of testosterone to restore lean body mass (muscle) in hypogonadal men, while at the same time causing a reduction in fat mass (Wang et al 2004). Treatment of hypogonadal men with testosterone results in improvement in overall physical performance as well as strength as assessed by, eg, hand grip power (Page 2005). Because of decreased muscle strength and impaired balance, older hypogonadal men are susceptible to falling and since they may already be osteopenic or osteoporotic as a consequence of hypogonadism, they are at increased risk for fracture as a result of the fall (Szulc et al 2003). Men with low levels of testosterone as in androgen deprivation therapy for prostate cancer, have a significant decrease in lean body mass and hemoglobin, while at the same time they experience an increase in weight, body fat and body mass index (Smith et al 2002). Treatment of frail hypogonadal men with testosterone, therefore, can result in changes in muscle gene expression, increased muscle mass, improvements in strength, power and endurance and improved physical function.
Testosterone is everywhere playing multiple roles from intrauterine life to advanced age. Table 1, the contents of which are always undergoing change primarily because of newly observed associations, provides an overview of the bodily systemic functions and patho-physiological states in which testosterone finds itself implicated. In some of these states there is a clear physiological cause and effect relationship. In others, evidence of the physiological role is early or tenuous.
More can be learned from a large, randomized, placebo-controlled trial of finasteride treatment in 18,800 men aged 55 or more. Finasteride is a 5α-reductase inhibitor which acts to prevent the metabolism of testosterone to dihydrotestosterone (DHT) – the most active androgen in the prostate. The trial showed a greater overall incidence of prostate cancer in the control group, but men treated with finasteride were more likely to have high grade tumors (Thompson et al 2003), suggesting that reduced androgen exposure of the prostate may delay the presentation of prostate cancer and/or promote advanced disease in some other way.
There are studies that show Soy consumption in humans leads to lower sperm count, but unfortunately they did not look at testosterone levels in the study (40). This (41) particular study compared the estrogen production of men drinking soy protein to those drinking whey. After two weeks they found the estradiol levels were equal, however soy drinkers had LOWER Testosterone levels and HIGHER cortisol levels (both bad).
How do you boost testosterone naturally? Testosterone is a male sex hormone. Low levels can cause changes to the distribution of body fat and muscle strength. Testosterone reduces with age, but people can boost it with lifestyle changes, including diet and exercise. Adequate sleep, nutritional supplements, and stress reduction may also help. Learn more here. Read now
How do you boost testosterone naturally? Testosterone is a male sex hormone. Low levels can cause changes to the distribution of body fat and muscle strength. Testosterone reduces with age, but people can boost it with lifestyle changes, including diet and exercise. Adequate sleep, nutritional supplements, and stress reduction may also help. Learn more here. Read now
Testosterone is the primary sex hormone in men, and it is responsible for the development of many of the physical characteristics that are considered typically male. Women also produce the hormone in much smaller amounts. Testosterone, part of a hormone class known as androgens, is produced by the testicles after stimulation by the pituitary gland, which is located near the base of the brain, and it sends signals to a male's testicles (or to a woman's ovaries) that spark feelings of sexual desire. (1)

A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
There are supplements out there that promise to increase your libido while also upping your testosterone. There are over the counter testosterone supplements and prescription supplements. There are supplements that market themselves as T-boosters, while also touting themselves as an aphrodisiac. And then there are companies that claim to have developed a testosterone pill that contains the triumvirate of male-enhancing properties: T-boosting, libido-enhancing, and even fertility-increasing. These supplement makers sometimes throw in an additional claim of muscle gain as well.
Everyone knows that carbohydrates are extremely important for testosterone production, but instead of reaching for grains during your next meal, stack your plate high with potatoes. Research reveals that grains have inflammatory properties, but the testosterone-friendly starches in potatoes will have the bodybuilder in your life smiling at dinnertime!
The diagnosis of late-onset hypogonadism requires the combination of low serum testosterone levels with symptoms of hypogonadism. Questionnaires are available which check for the symptoms of hypogonadism. These have been validated for the assessment of aging patients with hypogonadism (Morley et al 2000; Moore et al 2004) but have a low specificity. In view of the overlap in symptoms between hypogonadism, aging and other medical conditions it is wise to use a formal method of symptom assessment which can be used to monitor the effects of testosterone replacement.
In males, testosterone is synthesized primarily in Leydig cells. The number of Leydig cells in turn is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition, the amount of testosterone produced by existing Leydig cells is under the control of LH, which regulates the expression of 17β-hydroxysteroid dehydrogenase.[128]

Does the diminution that age brings with it in both total and bioavailable T have any clinical significance? This question leads us to the theme of this paper, “The Many Faces of Testosterone”. If testosterone were simply a “sex hormone” involved only with sexual desire and arousal we might tend to dismiss testosterone treatment in the aging man as merely a “life-style” therapy without any substantive basis for broad physiological necessity. The fact is, however, that the sexual attributes of testosterone are the least of its physiological necessities and that testosterone has a broad spectrum of demonstrated physiological functions as well as a wide variety of physiological and pathophysiological associations about which we are just learning.


Male hypogonadism becomes more common with increasing age and is currently an under-treated condition. The diagnosis of hypogonadism in the aging male requires a combination of symptoms and low serum testosterone levels. The currently available testosterone preparations can produce consistent physiological testosterone levels and provide for patient preference.
Cross-sectional studies have found a positive association between serum testosterone and some measures of cognitive ability in men (Barrett-Connor, Goodman-Gruen et al 1999; Yaffe et al 2002). Longitudinal studies have found that free testosterone levels correlate positively with future cognitive abilities and reduced rate of cognitive decline (Moffat et al 2002) and that, compared with controls, testosterone levels are reduced in men with Alzheimer’s disease at least 10 years prior to diagnosis (Moffat et al 2004). Studies of the effects of induced androgen deficiency in patients with prostate cancer have shown that profoundly lowering testosterone leads to worsening cognitive functions (Almeida et al 2004; Salminen et al 2004) and increased levels of serum amyloid (Gandy et al 2001; Almeida et al 2004), which is central to the pathogenesis of Alzheimer’s disease (Parihar and Hemnani 2004). Furthermore, testosterone reduces amyloid-induced hippocampal neurotoxity in vitro (Pike 2001) as well as exhibiting other neuroprotective effects (Pouliot et al 1996). The epidemiological and experimental data propose a potential role of testosterone in protecting cognitive function and preventing Alzheimer’s disease.
FITNESS DISCLAIMER: The information contained in this site is for educational purposes only. Vigorous high-intensity exercise is not safe or suitable for everyone. You should consult a physician before beginning a new diet or exercise program and discontinue exercise immediately and consult your physician if you experience pain, dizziness, or discomfort. The results, if any, from the exercises may vary from person-to-person. Engaging in any exercise or fitness program involves the risk of injury. Mercola.com or our panel of fitness experts shall not be liable for any claims for injuries or damages resulting from or connected with the use of this site. Specific questions about your fitness condition cannot be answered without first establishing a trainer-client relationship.
Reviews.com has an advertising relationship with some of the offers included on this page. However, the rankings and listings of our reviews, tools and all other content are based on objective analysis. For more information, please check out our full Advertiser Disclosure. Reviews.com strives to keep its information accurate and up to date. The information in our reviews could be different from what you find when visiting a financial institution, service provider or a specific product’s website. All products are presented without warranty.
Dobs and colleagues found that men with an increased body mass index had both reduced testosterone and reduced high density lipoprotein (HDL) levels. Treatment with testosterone increased the levels of HDL (Dobs et al 2001). Rising levels of HDL are not a consistent finding with TRT. More often, however, one finds reduced total cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels with TRT (Zgliczynski et al 1996; Whitsel et al 2001).

Another effect that can limit treatment is polycythemia, which occurs due to various stimulatory effects of testosterone on erythropoiesis (Zitzmann and Nieschlag 2004). Polycythemia is known to produce increased rates of cerebral ischemia and there have been reports of stroke during testosterone induced polycythaemia (Krauss et al 1991). It is necessary to monitor hematocrit during testosterone treatment, and hematocrit greater than 50% should prompt either a reduction of dose if testosterone levels are high or high-normal, or cessation of treatment if levels are low-normal. On the other hand, late onset hypogonadism frequently results in anemia which will then normalize during physiological testosterone replacement.

Carbs play a big part in determining your Testosterone levels. Let's start with what to avoid. First, research shows that a large serving of sugar (75g of glucose), decreased Testosterone levels by as much as 25%! (25 & 26). I know this is a pretty extreme dosage, but you may want to avoid massive servings of sugar! Also, men who have Metabolic syndrome have lower Testosterone levels (27). Metabolic syndrome is often brought about by chronic high blood sugar which leads to insulin resistance.
Epidemiological studies suggest that many significant clinical findings and important disease states are linked to low testosterone levels. These include osteoporosis (Campion and Maricic 2003), Alzheimer’s disease (Moffat et al 2004), frailty, obesity (Svartberg, von Muhlen, Sundsfjord et al 2004), diabetes (Barrett-Connor 1992), hypercholesterolemia (Haffner et al 1993; Van Pottelbergh et al 2003), hypertension (Phillips et al 1993), cardiac failure (Tappler and Katz 1979; Kontoleon et al 2003) and ischemic heart disease (Barrett-Connor and Khaw 1988). The extent to which testosterone deficiency is involved in the pathogenesis of these conditions, or to which testosterone supplementation could be useful in their treatment is an area of great interest with many unanswered questions.
Directions — SUGGESTED USE: As a dietary supplement take 3 capsules daily, preferably with a meal, or as directed by a healthcare professional. — Take two capsules with a meal twice a day. On days that you are not training, take two capsules in the morning and two capsules at night. On days that you train, take two capsules about an hour before workouts and take two capsules in the morning or at night depending on when you train.
Testosterone is a sex hormone that plays important roles in the body. In men, it’s thought to regulate sex drive (libido), bone mass, fat distribution, muscle mass and strength, and the production of red blood cells and sperm. A small amount of circulating testosterone is converted to estradiol, a form of estrogen. As men age, they often make less testosterone, and so they produce less estradiol as well. Thus, changes often attributed to testosterone deficiency might be partly or entirely due to the accompanying decline in estradiol.
×