It seems like today it’s a badge of honor to train every day until exhaustion. The ethos is to push yourself harder and harder every day. If that’s your philosophy towards exercise, you might be sabotaging your testosterone levels (as well as your 20 Mile March). Studies have shown that overtraining can reduce testosterone levels significantly. Yes, it’s important to exercise hard, but it’s even more important to give your body rest so it can recuperate from the damage you inflicted upon it.
Thus, alcohol metabolism destroys the essential coenzyme required for T synthesis. Alcohol also contributes to the release of special endorphins which inhibit hormone production. In addition, drinking too much alcohol leads to the elevation of estrogen levels in men because of the conversion of testosterone in estrogen. It means that T levels come down with a run.
Now that we know chronic insulin spikes lead to lower Testosterone production, I hope I haven’t sent you running into the low carb camp! There are a few studies out there showing that long term low carb or ketogenic dieting leads to higher cortisol levels (especially with subjects who are training), and decreased testosterone levels (28 & 29). I have used low carb diets in the past with successful results (winning a national bodybuilding title), however the key is to use cyclical carb re-feeds. If you’re going to go on a low carb diet for whatever reason, be sure to work in a large carb reefed once a week.
Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
Dr. Anthony’s Notes: Vitamin D has about 100 other beneficial body functions outside of it's impact on testosterone. Make sure you take the active Vitamin D3 (not D2 – from plant sources!) It’s also advisable to get 20 minutes of sunshine daily (weather permitting) – without sunscreen. Verdict: this is one of the natural testosterone supplements that work. Best Food Sources of Vitamin D3: Wild Alaskan Salmon (#1), Sardines, Eggs How To Take Vitamin D3: Using 3000-5000IU of Vitamin D3 per day is a good safe, research supported dose. Your physician can also test your blood for D3 levels for more precise monitoring.
The reason I started the experiment at that point is because I know a lot of guys who live my last-August lifestyle all the time, and I wanted to see what would happen to an “average” guy who turned things around. At the same time, there was no “normal” time in my life which would have been better for me to start the experiment. My stress level and diet fluctuates throughout the year anyway, so at any point, factors in my current lifestyle would have influenced the results. I wanted to begin at “ground zero.”

The University of Connecticut recently published findings stating that those who supplemented with whey protein produced less cortisol, a stress hormone, than those who did not supplement. Cortisol lowers production of sex hormones and is also responsible for belly fat formation. Ricotta is an excellent source of natural whey protein and amino acids, both of which are essential to muscle growth and avoiding the spare tire.
Topical testosterone, specifically gels, creams and liquids, may transfer to others. Women and children are most at risk of harmful effects from contact with them. You should take care to cover the area and wash your hands well after putting on the medication. Be careful not to let the site with the topical TT touch others because that could transfer the drug.
A: Testosterone production declines naturally with age. Low testosterone, or testosterone deficiency (TD), may result from disease or damage to the hypothalamus, pituitary gland, or testicles that inhibits hormone secretion and testosterone production. Treatment involves hormone replacement therapy. The method of delivery is determined by age and duration of deficiency. Oral testosterone, Testred (methyltestosterone), is associated with liver toxicity and liver tumors and so is prescribed sparingly. Transdermal delivery with a testosterone patch is becoming the most common method of treatment for testosterone deficiency in adults. A patch is worn, either on the scrotum or elsewhere on the body, and testosterone is released through the skin at controlled intervals. Patches are typically worn for 12 or 24 hours and can be worn during exercise, bathing, and strenuous activity. Two transdermal patches that are available are Androderm (nonscrotal) and Testoderm (scrotal). The Androderm patch is applied to the abdomen, lower back, thigh, or upper arm and should be applied at the same time every evening between 8 p.m. and midnight. If the patch falls off before noon, replace it with a fresh patch until it is time to reapply a new patch that evening. If the patch falls off after noon, do not replace it until you reapply a new patch that evening. The most common side effects associated with transdermal patch therapy include itching, discomfort, and irritation at the site of application. Some men may experience fluid retention, acne, and temporary abnormal breast development (gynecosmastia). AndroGel and Testim are transdermal gels that are applied once daily to the clean dry skin of the upper arms or abdomen. When used properly, these gels deliver testosterone for 24 hours. The gel must be allowed to dry on the skin before dressing and must be applied at least 6 hours before showering or swimming. Gels cannot be applied to the genitals. AndroGel is available in a metered-dose pump, which allows physicians to adjust the dosage of the medication. Side effects of transdermal gels include adverse reactions at the site of application, acne, headache, and hair loss (alopecia). For more specific information on treatments for low testosterone, consult with your doctor or pharmacist for guidance based on current health condition. Kimberly Hotz, PharmD

Testosterone is a sex hormone that plays important roles in the body. In men, it’s thought to regulate sex drive (libido), bone mass, fat distribution, muscle mass and strength, and the production of red blood cells and sperm. A small amount of circulating testosterone is converted to estradiol, a form of estrogen. As men age, they often make less testosterone, and so they produce less estradiol as well. Thus, changes often attributed to testosterone deficiency might be partly or entirely due to the accompanying decline in estradiol.


Transdermal preparations of testosterone utilize the fact that the skin readily absorbs steroid hormones. Initial transdermal preparations took the form of scrotal patches with testosterone loaded on to a membranous patch. Absorption from the scrotal skin was particularly good and physiological levels of testosterone with diurnal variation were reliably attained. The scrotal patches are now rarely used because they require regular shaving or clipping of scrotal hair and because they produce rather high levels of dihydrotestosterone compared to testosterone (Behre et al 1999). Subsequently, non-scrotal patches were developed but the absorptive capacity of non-scrotal skin is much lower, so these patches contain additional chemicals which enhance absorption. The non-scrotal skin patches produce physiological testosterone levels without supraphysiological dihydrotestosterone levels. Unfortunately, the patches produce a high rate of local skin reactions often leading to discontinuation (Parker and Armitage 1999). In the last few years, transdermal testosterone gel preparations have become available. These require daily application by patients and produce steady state physiological testosterone levels within a few days in most patients (Swerdloff et al 2000; Steidle et al 2003). The advantages compared with testosterone patches include invisibility, reduced skin irritation and the ability to adjust dosage, but concerns about transfer to women and children on close skin contact necessitate showering after application or coverage with clothes.
Decreased testosterone production in men with rheumatoid arthritis is a common finding (Stafford et al 2000), and it is now generally recognized that androgens have the capacity to suppress both the hormonal and cellular immune response and so act as one of the body’s natural anti-inflammatory agents (Cutolo et al 2002). This known anti-inflammatory action of testosterone has led to studying the effect of testosterone therapy in men with rheumatoid disease. Although not all studies have reported positive effects of testosterone treatment (Hall et al 1996), some studies do demonstrate an improvement in both clinical and chemical markers of the immune response (Cutolo et al 1991; Cutolo 2000). This observation would go along with more recent evidence that testosterone or its metabolites protects immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells (Page et al 2006).
Trials of testosterone treatment in men with type 2 diabetes have also taken place. A recent randomized controlled crossover trial assessed the effects of intramuscular testosterone replacement to achieve levels within the physiological range, compared with placebo injections in 24 men with diabetes, hypogonadism and a mean age of 64 years (Kapoor et al 2006). Ten of these men were insulin treated. Testosterone treatment led to a significant reduction in glycated hemoglobin (HbA1C) and fasting glucose compared to placebo. Testosterone also produced a significant reduction in insulin resistance, measured by the homeostatic model assessment (HOMA), in the fourteen non-insulin treated patients. It is not possible to measure insulin resistance in patients treated with insulin but five out of ten of these patients had a reduction of insulin dose during the study. Other significant changes during testosterone treatment in this trial were reduced total cholesterol, waist circumference and waist-hip ratio. Similarly, a placebo-controlled but non-blinded trial in 24 men with visceral obesity, diabetes, hypogonadism and mean age 57 years found that three months of oral testosterone treatment led to significant reductions in HbA1C, fasting glucose, post-prandial glucose, weight, fat mass and waist-hip ratio (Boyanov et al 2003). In contrast, an uncontrolled study of 150 mg intramuscular testosterone given to 10 patients, average age 64 years, with diabetes and hypogonadism found no significant change in diabetes control, fasting glucose or insulin levels (Corrales et al 2004). Another uncontrolled study showed no beneficial effect of testosterone treatment on insulin resistance, measured by HOMA and ‘minimal model’ of area under acute insulin response curves, in 11 patients with type 2 diabetes aged between 33 and 73 years (Lee et al 2005). Body mass index was within the normal range in this population and there was no change in waist-hip ratio or weight during testosterone treatment. Baseline testosterone levels were in the low-normal range and patients received a relatively small dose of 100 mg intramuscular testosterone every three weeks. A good increase in testosterone levels during the trial is described but it is not stated at which time during the three week cycle the testosterone levels were tested, so the lack of response could reflect an insufficient overall testosterone dose in the trial period.
Use natural grooming products. Most grooming products these days contain parabens, another type of xenoestrogen. And by most, I mean more than 75% of all products. To reduce my exposure as much as possible, I became a hippy during my experiment and started using all natural, paraben-free grooming products. You can find most of these items at most health food stores:
Testosterone levels generally peak during adolescence and early adulthood. As you get older, your testosterone level gradually declines — typically about 1 percent a year after age 30 or 40. It is important to determine in older men if a low testosterone level is simply due to the decline of normal aging or if it is due to a disease (hypogonadism).
×