At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice.
The production of the stress hormone cortisol blocks the production and effects of testosterone. From a biological perspective, cortisol increases your “fight or flight” response, thereby lowering testosterone-associated functions such as mating, competing, and aggression. Chronic stress can take a toll on testosterone production, as well as your overall health. Therefore, stress management is equally important to a healthy diet and regular exercise. Tools you can use to stay stress-free include prayer, meditation, laughter, and yoga. Relaxation skills, such as deep breathing and visualization, can also promote your emotional health.
It is hard to know how many men among us have TD, although data suggest that overall about 2.1% (about 2 men in every 100) may have TD. As few as 1% of younger men may have TD, while as many as 50% of men over 80 years old may have TD. People who study the condition often use different cut-off points for the numbers, so you may hear different numbers being stated.
Vitamin D deficiency is a growing epidemic in the US, and is profoundly affecting men’s health. The cholesterol-derived steroid hormone vitamin D is crucial for men’s health. It plays a role in the development of the sperm cell nucleus, and helps maintain semen quality and sperm count. Vitamin D can also increase your testosterone level, helping improve your libido. Have your vitamin D levels tested using a 25(OH)D or a 25-hydroxyvitamin D test. The optimal level of vitamin D is around 50 to 70 ng/ml for adults. There are three effective sources of vitamin D:
Among my favorite stress management tools is the Emotional Freedom Technique (EFT), a method similar to acupuncture but without the use of needles. EFT is known to eliminate negative behavior and instill a positive mentality. Always bear in mind that your emotional health is strongly linked to your physical health, and you have to pay attention to your negative feelings as much as you do to the foods you eat.
Ok. So this product is meant to be taken continuously and without side-effects. But my question is, will there be replenishment from this product in aiding the body's natural ability to produce testosterone? In other words, will there ever be a time when I can say well I don't have to take this any more as my body is producing testosterone again on it's own and my muscle mass has been enhanced?
Stored food in glassware and never, ever, ever heated food in plastic containers. Most modern plastics contain phthalates. Phthalates are what give plastic their flexibility, durability, and longevity. But they also screw with hormones by imitating estrogen. Because I didn’t want any of those T-draining molecules in my food, I kept all my food in glassware. I also made sure to never heat food in plastic containers, as heat increases the transfer of phthalates into food.
On the average, you need to sleep at least 8 hours per night to stay healthy. If you want a night sleep to contribute to the maximum testosterone production, it’s important to make your sleep comfortable. Thus, the bedroom temperature shouldn’t exceed 21°C. In addition, you should ventilate your bedroom thoroughly before sleeping. Furthermore, before going to bed, don’t overload your stomach with fatty foods, as well as don’t drink alcohol and caffeinated beverages. Finally, you have to avoid intense physical activity before bedtime.6
Before the ready availability of non-injectible testosterone preparations, and because of their ease of administration by the oral route, 17-alkylated steroids were popular surrogate agents for testosterone. These substances, however, were capable of inducing several risk factors for coronary artery disease (Kopera 1993; Hall and Hall 2005) and as a consequence, particularly after the revelations of extensive 17-alkylated anabolic steroid abuse by athletes, testosterone, became unjustly incriminated. The evidence, however, tends to suggest just the opposite; testosterone may even be cardioprotective. Dunajska and colleagues have demonstrated that when compared to controls, men with coronary artery disease tend to have: lower total testosterone levels and free androgen indices, more abdominal fat, higher blood sugar and insulin levels (Dunajska et al 2004).
Trials of testosterone treatment in men with type 2 diabetes have also taken place. A recent randomized controlled crossover trial assessed the effects of intramuscular testosterone replacement to achieve levels within the physiological range, compared with placebo injections in 24 men with diabetes, hypogonadism and a mean age of 64 years (Kapoor et al 2006). Ten of these men were insulin treated. Testosterone treatment led to a significant reduction in glycated hemoglobin (HbA1C) and fasting glucose compared to placebo. Testosterone also produced a significant reduction in insulin resistance, measured by the homeostatic model assessment (HOMA), in the fourteen non-insulin treated patients. It is not possible to measure insulin resistance in patients treated with insulin but five out of ten of these patients had a reduction of insulin dose during the study. Other significant changes during testosterone treatment in this trial were reduced total cholesterol, waist circumference and waist-hip ratio. Similarly, a placebo-controlled but non-blinded trial in 24 men with visceral obesity, diabetes, hypogonadism and mean age 57 years found that three months of oral testosterone treatment led to significant reductions in HbA1C, fasting glucose, post-prandial glucose, weight, fat mass and waist-hip ratio (Boyanov et al 2003). In contrast, an uncontrolled study of 150 mg intramuscular testosterone given to 10 patients, average age 64 years, with diabetes and hypogonadism found no significant change in diabetes control, fasting glucose or insulin levels (Corrales et al 2004). Another uncontrolled study showed no beneficial effect of testosterone treatment on insulin resistance, measured by HOMA and ‘minimal model’ of area under acute insulin response curves, in 11 patients with type 2 diabetes aged between 33 and 73 years (Lee et al 2005). Body mass index was within the normal range in this population and there was no change in waist-hip ratio or weight during testosterone treatment. Baseline testosterone levels were in the low-normal range and patients received a relatively small dose of 100 mg intramuscular testosterone every three weeks. A good increase in testosterone levels during the trial is described but it is not stated at which time during the three week cycle the testosterone levels were tested, so the lack of response could reflect an insufficient overall testosterone dose in the trial period.
Cardiovascular disease, and its underlying pathological process atherosclerosis, is an important cause of morbidity and mortality in the developed and developing world. Coronary heart disease in particular is the commonest cause of death worldwide (AHA 2002; MacKay and Mensah 2004). As well as increasing with age, this disease is more common in the male versus female population internationally, which has led to interest in the potential role of sex hormones in modulating risk of development of atherosclerosis. Concerns about the potential adverse effects of testosterone treatment on cardiovascular disease have previously contributed to caution in prescribing testosterone to those who have, or who are at risk of, cardiovascular disease. Contrary to fears of the potential adverse effects of testosterone on cardiovascular disease, there are over forty epidemiological studies which have examined the relationship of testosterone levels to the presence or development of coronary heart disease, and none have shown a positive correlation. Many of these studies have found the presence of coronary heart disease to be associated with low testosterone levels (Reviews: Jones, Jones et al 2003; Jones et al 2005).
Testosterone levels generally peak during adolescence and early adulthood. As you get older, your testosterone level gradually declines — typically about 1 percent a year after age 30 or 40. It is important to determine in older men if a low testosterone level is simply due to the decline of normal aging or if it is due to a disease (hypogonadism).
×