How do you boost testosterone naturally? Testosterone is a male sex hormone. Low levels can cause changes to the distribution of body fat and muscle strength. Testosterone reduces with age, but people can boost it with lifestyle changes, including diet and exercise. Adequate sleep, nutritional supplements, and stress reduction may also help. Learn more here. Read now

Changes in body composition are seen with aging. In general terms, aging males are prone to loss of muscle mass and a gain in fat mass, especially in the form of visceral or central fat. An epidemiological study of community dwelling men aged between 24 and 85 years has confirmed that total and free testosterone levels are inversely correlated with waist circumference and that testosterone levels are specifically related to this measure of central obesity rather than general obesity (Svartberg, von Muhlen, Sundsfjord et al 2004). Prospective studies show that testosterone levels predict future development of central obesity (Khaw and Barrett-Connor 1992; Tsai et al 2000). Reductions in free testosterone also correlate with age related declines in fat free mass (muscle mass) and muscle strength (Baumgartner et al 1999; Roy et al 2002). Studies in hypogonadal men confirm an increase in fat mass and decrease in fat free mass versus comparable eugonadal men (Katznelson et al 1998). Taken together, the epidemiological data suggest that a hypogonadal state promotes loss of muscle mass and a gain in fat mass, particularly visceral fat and therefore mimics the changes of ‘normal’ aging.
You should also know that a lot of people are deficient in Vitamin D. In the USA & many other western regions in the world, vitamin D deficiency is at epidemic proportions. The best way to increase your D levels is sun exposure. You only need 20-30 minutes of exposure to a large amount of skin (i.e., take your shirt off and go for a walk during the day).
Decreased testosterone production in men with rheumatoid arthritis is a common finding (Stafford et al 2000), and it is now generally recognized that androgens have the capacity to suppress both the hormonal and cellular immune response and so act as one of the body’s natural anti-inflammatory agents (Cutolo et al 2002). This known anti-inflammatory action of testosterone has led to studying the effect of testosterone therapy in men with rheumatoid disease. Although not all studies have reported positive effects of testosterone treatment (Hall et al 1996), some studies do demonstrate an improvement in both clinical and chemical markers of the immune response (Cutolo et al 1991; Cutolo 2000). This observation would go along with more recent evidence that testosterone or its metabolites protects immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells (Page et al 2006).
Sergeant Steel ran into trouble here because it contains Shilajit — a type of plant-based resin. Shilajit is banned in Canada because the Canadian government found heavy metal levels when investigating the ingredient. Shilajit is hard to find, and sensitive to water and variations in temperature, so most manufacturers mix it with additives to make it more stable. Research at Boston University School of Medicine found that “nearly 21 percent of 193 ayurvedic herbal supplements [...] contained lead, mercury or arsenic,” and included shilajit on the list of contaminated ingredients. Even though Sergeant Steel lists its shilajit is “purified,” it doesn’t offer any third-party testing to confirm whether or not their shilajit contains heavy metals, and so we cut it.

Testosterone belongs to a class of male hormones called androgens, which are sometimes called steroids or anabolic steroids. In men, testosterone is produced mainly in the testes, with a small amount made in the adrenal glands. The brain's hypothalamus and pituitary gland control testosterone production. The hypothalamus instructs the pituitary gland on how much testosterone to produce, and the pituitary gland passes the message on to the testes. These communications happen through chemicals and hormones in the bloodstream.
Hooper, D. R., Kraemer, W. J., Saenz, C., Schill, K. E., Focht, B. C., Volek, J. S. … Maresh, C. M. (2017, July). The presence of symptoms of testosterone deficiency in the exercise-hypogonadal male condition and the role of nutrition [Abstract]. European Journal of Applied Physiology, 117(7), 1349–1357. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28470410

One study looking at alcohol consumption found that increasing alcohol consumption led to a higher level of free & total testosterone compared to a non-drinking control group (20). Drinking did however lower SHBG testosterone levels, though this type of testosterone is bound to a protein meaning our bodies cannot use it to build muscle or increase our mood.
Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
Testosterone is significantly correlated with aggression and competitive behaviour and is directly facilitated by the latter. There are two theories on the role of testosterone in aggression and competition.[77] The first one is the challenge hypothesis which states that testosterone would increase during puberty thus facilitating reproductive and competitive behaviour which would include aggression.[77] Thus it is the challenge of competition among males of the species that facilitates aggression and violence.[77] Studies conducted have found direct correlation between testosterone and dominance especially among the most violent criminals in prison who had the highest testosterone levels.[77] The same research also found fathers (those outside competitive environments) had the lowest testosterone levels compared to other males.[77]
A team led by Dr. Joel Finkelstein at Massachusetts General Hospital investigated testosterone and estradiol levels in 400 healthy men, 20 to 50 years of age. To control hormone levels, the researchers first gave the participants injections of a drug that suppressed their normal testosterone and estradiol production. The men were randomly assigned to 5 groups that received different amounts (from 0 to 10 grams) of a topical 1% testosterone gel daily for 16 weeks. Half of the participants were also given a drug to block testosterone from being converted to estradiol.
Remember that each person is unique, and each body responds differently to treatment. TT may help erectile function, low sex drive, bone marrow density, anemia, lean body mass, and/or symptoms of depression. However, there is no strong evidence that TT will help memory recall, measures of diabetes, energy, tiredness, lipid profiles, or quality of life.
Welcome to the world's most comprehensive website on Herbal Supplements and natural health care. Since ages, ayurvedic herbal remedies have been used by our ancestors to cure common diseases. In recent years this alternative form of medicine has been gaining tremendous popularity. Herbal supplements made of medicinal plants, fruits and spices are usually less expensive and cause fewer reactions or side effects when compared to drugs and medications offered by pharmaceutical companies.
Men can experience a range of symptoms if testosterone decreases more than it should. Low testosterone, or low T, is diagnosed when levels fall below 300 nanograms per deciliter (ng/dL). A normal range is typically 300–1000 ng/dL, according to the U.S. Food and Drug Administration. A blood test called a serum testosterone test is used to determine your level of circulating testosterone.
Exercise boosts testosterone in two important ways. First, specific types of exercise actually cause our body to produce more testosterone. We’ll talk more about those in a bit. Second, exercise helps to increase muscle mass and decrease body fat. As we’ve discussed previously, adipose tissue converts testosterone into estrogen. The less fat we get, the more T we have.
Conflicting results have been obtained concerning the importance of testosterone in maintaining cardiovascular health.[29][30] Nevertheless, maintaining normal testosterone levels in elderly men has been shown to improve many parameters that are thought to reduce cardiovascular disease risk, such as increased lean body mass, decreased visceral fat mass, decreased total cholesterol, and glycemic control.[31]
The hypogonadal-obesity-adipocytokine cycle hypothesis. Adipose tissue contains the enzyme aromatase which metabolises testosterone to oestrogen. This results in reduced testosterone levels, which increase the action of lipoprotein lipase and increase fat mass, thus increasing aromatisation of testosterone and completing the cycle. Visceral fat also promotes lower testosterone levels by reducing pituitary LH pulse amplitude via leptin and/or other factors. In vitro studies have shown that leptin also inhibits testosterone production directly at the testes. Visceral adiposity could also provide the link between testosterone and insulin resistance (Jones 2007).

Cardiovascular disease, and its underlying pathological process atherosclerosis, is an important cause of morbidity and mortality in the developed and developing world. Coronary heart disease in particular is the commonest cause of death worldwide (AHA 2002; MacKay and Mensah 2004). As well as increasing with age, this disease is more common in the male versus female population internationally, which has led to interest in the potential role of sex hormones in modulating risk of development of atherosclerosis. Concerns about the potential adverse effects of testosterone treatment on cardiovascular disease have previously contributed to caution in prescribing testosterone to those who have, or who are at risk of, cardiovascular disease. Contrary to fears of the potential adverse effects of testosterone on cardiovascular disease, there are over forty epidemiological studies which have examined the relationship of testosterone levels to the presence or development of coronary heart disease, and none have shown a positive correlation. Many of these studies have found the presence of coronary heart disease to be associated with low testosterone levels (Reviews: Jones, Jones et al 2003; Jones et al 2005).
In summary it’s important to know that this topic is still hotly debated, and there are a lot of inconsistencies in the data. We do know that soy contains phytoestrogens and does seem to have a lot of affects on the body, including some studies that show decreased Testosterone levels. For that reason (and the fact that it tastes like ass) I avoid it, and I recommend you also avoid it (in particular soy isolates!) if you’re seeking higher testosterone.
Reviews.com has an advertising relationship with some of the offers included on this page. However, the rankings and listings of our reviews, tools and all other content are based on objective analysis. For more information, please check out our full Advertiser Disclosure. Reviews.com strives to keep its information accurate and up to date. The information in our reviews could be different from what you find when visiting a financial institution, service provider or a specific product’s website. All products are presented without warranty.
The mineral zinc is important for testosterone production, and supplementing your diet for as little as six weeks has been shown to cause a marked improvement in testosterone among men with low levels.1 Likewise, research has shown that restricting dietary sources of zinc leads to a significant decrease in testosterone, while zinc supplementation increases it2 -- and even protects men from exercised-induced reductions in testosterone levels.3
Conflicting results have been obtained concerning the importance of testosterone in maintaining cardiovascular health.[29][30] Nevertheless, maintaining normal testosterone levels in elderly men has been shown to improve many parameters that are thought to reduce cardiovascular disease risk, such as increased lean body mass, decreased visceral fat mass, decreased total cholesterol, and glycemic control.[31]

While I do have a pretty manly mustache, I’m not a doctor or a medical expert. I’m a guy with a law degree he’s never used who blogs about manliness. What I’m about to share shouldn’t be taken as a substitute for qualified medical expertise. It’s simply my experience and views on the subject. Before you make any changes in lifestyle or diet, talk to your doctor or healthcare provider. Be smart.


The mineral zinc is important for testosterone production, and supplementing your diet for as little as six weeks has been shown to cause a marked improvement in testosterone among men with low levels.1 Likewise, research has shown that restricting dietary sources of zinc leads to a significant decrease in testosterone, while zinc supplementation increases it2 -- and even protects men from exercised-induced reductions in testosterone levels.3

It is hard to know how many men among us have TD, although data suggest that overall about 2.1% (about 2 men in every 100) may have TD. As few as 1% of younger men may have TD, while as many as 50% of men over 80 years old may have TD. People who study the condition often use different cut-off points for the numbers, so you may hear different numbers being stated.


The aim of treatment for hypogonadism is to normalize serum testosterone levels and abolish symptoms or pathological states that are due to low testosterone levels. The exact target testosterone level is a matter of debate, but current recommendations advocate levels in the mid-lower normal adult range (Nieschlag et al 2005). Truly physiological testosterone replacement would require replication of the diurnal rhythm of serum testosterone levels, but there is no current evidence that this is beneficial (Nieschlag et al 2005).
This is natural amino acid and can boost testosterone levels. According to research, it increases the production of luteinizing hormone which triggers the production of testosterone from Leydig cells. It also helps in improving sperm quality and quantity. The men who take this have increased testosterone production which allows them to perform better in athletic activity. It helps to increase muscle mass and strength.
Puberty occurs when there is an “awakening” of the hypothalamic-pituitary axis. The hypothalamus increases its secretion of gonadotropin releasing hormone (GnRH) which in turn stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH). This leads to a significant increase in the production of testicular testosterone and the induction of the well-known secondary sex characteristics associated with puberty: growth spurt, increased libido, increased erectile function, acne, increased body hair, increased muscle mass, deepening of the voice, spermatogenesis, gynecomastia (usually transient).
In contrast to steroids, testosterone boosters have a fully different mechanism of action. They are the products which contain the natural ingredients only. These ingredients act by stimulating the man’s body to synthesize own testosterone. So, testosterone levels grow naturally without negative health effects associated with the intake of steroids.
Studies also show a consistent negative correlation of testosterone with blood pressure (Barrett-Connor and Khaw 1988; Khaw and Barrett-Connor 1988; Svartberg, von Muhlen, Schirmer et al 2004). Data specific to the ageing male population suggests that this relationship is particularly powerful for systolic hypertension (Fogari et al 2005). Interventional trials have not found a significant effect of testosterone replacement on blood pressure (Kapoor et al 2006).
The use of anabolic steroids (manufactured androgenic hormones) shuts down the release of luteinising hormone and follicle stimulating hormone secretion from the pituitary gland, which in turn decreases the amount of testosterone and sperm produced within the testes. In men, prolonged exposure to anabolic steroids results in infertility, a decreased sex drive, shrinking of the testes and breast development. Liver damage may result from its prolonged attempts to detoxify the anabolic steroids. Behavioural changes (such as increased irritability) may also be observed. Undesirable reactions also occur in women who take anabolic steroids regularly, as a high concentration of testosterone, either natural or manufactured, can cause masculinisation (virilisation) of women.
×