Millions of American men use a prescription testosterone gel or injection to restore normal levels of the manly hormone. The ongoing pharmaceutical marketing blitz promises that treating "low T" this way can make men feel more alert, energetic, mentally sharp, and sexually functional. However, legitimate safety concerns linger. For example, some older men on testosterone could face higher cardiac risks.
Finally, we looked at the proprietary blends of our remaining boosters, and dug into their ingredient lists. Supplements frequently include ingredients known for their “folk-lore” value; they’re believed to work, even when there isn’t any scientific background to prove it. Though we didn’t ding points if an ingredient wasn’t proven to be good (just so long as it wasn’t proven to be bad), we didn’t want to include any ingredient with evidence of causing harm.
Every ingredient can be harmful when taken in significant quantities (we go more into that below), so we pored over each booster’s ingredient list to make sure that they weren’t serving up an overdose. In particular, we took a close look at magnesium and zinc, which have enough scientific background behind them to offer hard upper limits on how much you can safely consume.
Hypogonadism (as well as age-related low testosterone) is diagnosed with blood tests that measure the level of testosterone in the body. The Endocrine Society recommends testing for suspected low T with a total testosterone test. It may be performed in the morning when testosterone levels tend to be highest in young men, although this isn't necessarily the case in older men. The test may be repeated on another day if the results show a low T level. (5)
The changes in average serum testosterone levels with aging mean that the proportion of men fulfilling a biochemically defined diagnosis of hypogonadism increases with aging. Twenty percent of men aged over 60 have total testosterone levels below the normal range and the figure rises to 50% in those aged over 80. The figures concerning free testosterone are even higher as would be expected in view of the concurrent decrease in SHBG levels (Harman et al 2001).
Such sort of injuries varies in severity and extent of damage markedly from one person to the other and withdrawal of the drug/supplement coupled with proper medical attention suffice in terms of alleviating the symptoms.[8,12] This was observed in the present case. However, the liver injury observed here may not be confidently linked to product consumption as the subject later reported that the following recovery he consumed two more courses of the booster with no side effects. Tests performed following hospital discharge, and repeated use of the product showed AST and ALT to be slightly high, whereas the rest of the blood parameters tested appeared to be normal. The AST/ALT ratio is considered to be a very important parameter for the evaluation of liver diseases, such as non-alcoholic fatty liver disease,[13] though it is rarely considered alone. Overall, the evidence was inconclusive in the present work in terms of linking the use of a testosterone booster with liver injury. However, even though a single case report cannot establish causality with statistical power.[13] Further research on the usage of a commercial testosterone booster within large populations for a long period is necessary to investigate whether the symptoms shown in the present case were significantly present in other athletes consuming the same commercial product or not. To guarantee an optimal outcome with no severe side effects, further research is warranted to confirm the present findings and determine whether the effects observed in this case report would be statistically significant in larger samples.
If in a 46 XY individual testosterone is either not produced in adequate concentrations as in gonadal dysgenesis (MacLaughlin and Donahue 2004), or in the absence of the enzyme 17 alpha-hydroxylase so that testosterone is not produced (Ergun-Longmire et al 2006), or testosterone androgen receptors are absent as in the androgen insensitivity syndrome (Hughes and Deeb 2006), phenotypic females will result.
Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.
If a young man's low testosterone is a problem for a couple trying to get pregnant, gonadotropin injections may be an option in some cases. These are hormones that signal the body to produce more testosterone. This may increase the sperm count. Hedges also describes implantable testosterone pellets, a relatively new form of treatment in which several pellets are placed under the skin of the buttocks, where they release testosterone over the course of about three to four months. Injections and nasal gels may be other options for some men.
Most studies support a link between adult criminality and testosterone, although the relationship is modest if examined separately for each sex. Nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have also found testosterone to be associated with behaviors or personality traits linked with criminality such as antisocial behavior and alcoholism. Many studies have also been done on the relationship between more general aggressive behavior/feelings and testosterone. About half the studies have found a relationship and about half no relationship.[66]

Osteoporosis refers to pathological loss of bone density and strength. It is an important condition due to its prevalence and association with bone fractures; most commonly of the hip, vertebra and forearm. Men are relatively protected from the development of osteoporosis by a higher peak bone mass compared with women (Campion and Maricic 2003). Furthermore, women lose bone at an accelerated rate immediately following the menopause. Nevertheless, men start to lose bone mass during early adult life and experience an increase in the rate of bone loss with age (Scopacasa et al 2002). Women of a given age have a higher prevalence of osteoporosis in comparison to men but the prevalence increases with age in both sexes. As a result, men have a lower incidence of osteoporotic fractures than women of a given age but the gap between the sexes narrows with advancing age (Chang et al 2004) and there is evidence that hip fractures in men are associated with greater mortality than in women (Campion and Maricic 2003).


Testosterone fluctuates according to age and life circumstance, often plummeting at the onset of parenthood, and spiking (for some) during moments of triumph. Romantic relationships, too, can impact a person’s testosterone production; though the reasons are still not fully understood, entering a relationship tends to increase women’s testosterone levels, while decreasing men’s. Since males produce significantly more testosterone than females—about 20 times more each day—females can be more sensitive to these fluctuations. High levels of testosterone, particularly in men, have been correlated with a greater likelihood of getting divorced or engaging in extramarital affairs, though a causal link has not been established.
On review of the patient’s history, he was found to have undergone laboratory tests before starting to use the aforementioned testosterone booster product. All blood parameters (testosterone hormone and full chemical profile) before product intake were in the normal range. A physical examination that included blood pressure and pulse assessments showed nothing out of the ordinary, and the man appeared to be in good condition before product consumption. After that medical checkup, the athlete began to consume the product for 42 continuous days divided into 2 cycles (each cycle comprised 24 days). The daily dose was a single pack of Universal Nutrition Animal Stak (ingredients are listed in Table 1), following the exact direction of the manufacturing company hoping to get the best results.
In contrast to steroids, testosterone boosters have a fully different mechanism of action. They are the products which contain the natural ingredients only. These ingredients act by stimulating the man’s body to synthesize own testosterone. So, testosterone levels grow naturally without negative health effects associated with the intake of steroids.
A 46 XY fetus is destined to become a male because the Y chromosome carries testicular determining gene which initiates transformation of the undifferentiated gonad into testes (Töhönen 2003). The testes subsequently produce both Mullerian Inhibiting Factor (to induce degeneration of the Mullerian system, the internal female ductal apparatus) and testosterone (to stimulate growth and development of the Wolffian system – epididymus, vas deferens, seminal vesicle and, after conversion to dihydrotestosterone (DHT) by the enzyme 5-α-reducase, the prostate gland). DHT is also the primary androgen to cause androgenization of the external genitalia.
There is also solid research indicating that if you take astaxanthin in combination with saw palmetto, you may experience significant synergistic benefits. A 2009 study published in the Journal of the International Society of Sports Nutrition found that an optimal dose of saw palmetto and astaxanthin decreased both DHT and estrogen while simultaneously increasing testosterone.6 Also, in order to block the synthesis of excess estrogen (estradiol) from testosterone there are excellent foods and plant extracts that may help to block the enzyme known as aromatase which is responsible producing estrogen. Some of these include white button mushrooms, grape seed extract and nettles.7
In addition to weightlifting, studies have shown that HIIT workouts can also help boost testosterone levels. For those of you who don’t know, HIIT stands for high-intensity interval training. It calls for short, intense bursts of exercise, followed by a less-intense recovery period. You repeat with the intense/less-intense cycle several times throughout the workout. In addition to increasing T, HIIT has been shown to improve athletic conditioning and fat metabolism, as well as increase muscle strength.
I highly recommend using a great essential amino acid mix post-exercise in order to boost testosterone.  These essential amino acids and especially the concentrated branched chain amino acids leucine, isoleucine and valine stimulate muscle protein synthesis.  Getting these amino acids in the post-workout window dramatically boosts testosterone production (14).  I like using our Amino Strong and will often recommend a scoop pre-workout and post-workout for the best muscle building, testosterone boosting benefits.
Here’s one proof: in a number of British rivers, 50 percent of male fish were found to produce eggs in their testes. According to EurekAlert,3 EDCs have been entering rivers and other waterways through sewage systems for years, altering the biology of male fish. It was also found that fish species affected by EDCs had 76 percent reduction in their reproductive function.
In fact, testosterone supplements might cause more problems than they solve. Studies have suggested a connection between supplements and heart problems. A 2010 study reported in The New England Journal of Medicine showed that some men over age 65 had an increase in heart problems when they used testosterone gel. A later of men younger than 65 at risk for heart problems and heart-healthy older men showed that both groups had a greater risk of heart attack when taking testosterone supplements.
That said, a group of researchers at the National University of Malaysia did a systemic literature review of longjack, looking for clinical research that demonstrated a relationship between the shrub and testosterone levels. Of 150 articles, only 11 met their inclusion criteria — involving humans and scientifically rigorous. However, of those 11 studies, seven “revealed remarkable association” between using longjack and improving male sexual health, while the remaining four “failed to demonstrate sufficient effects.” The team concluded that longjack looks “promising” when it comes to raising low testosterone, and that there is convincing evidence that it works.
It is important not to use any DHEA product without the supervision of a professional. Find a qualified health care provider who will monitor your hormone levels and determine if you require supplementation. Rather than using an oral hormone supplementation, I recommend trans-mucosal (vagina or rectum) application. Skin application may not be wise, as it makes it difficult to measure the dosage you receive. This may cause you to end up receiving more than what your body requires.
Using steroids eventually trains your body to realize that it doesn’t have to produce as much testosterone to reach its equilibrium, so to reach the same highs you’ll need to take more steroids, and when you stop taking them, your body will need to readjust — you’ll be living with low testosterone for a while (and you’ll need to see a doctor if your body doesn’t readjust on its own). Forcing your body to stay above your natural testosterone, even if you’re naturally low, can create this kind of dependency which ultimately decreases the amount of testosterone your body will produce on its own.

Fatherhood decreases testosterone levels in men, suggesting that the emotions and behavior tied to decreased testosterone promote paternal care. In humans and other species that utilize allomaternal care, paternal investment in offspring is beneficial to said offspring's survival because it allows the parental dyad to raise multiple children simultaneously. This increases the reproductive fitness of the parents, because their offspring are more likely to survive and reproduce. Paternal care increases offspring survival due to increased access to higher quality food and reduced physical and immunological threats.[60] This is particularly beneficial for humans since offspring are dependent on parents for extended periods of time and mothers have relatively short inter-birth intervals.[61] While extent of paternal care varies between cultures, higher investment in direct child care has been seen to be correlated with lower average testosterone levels as well as temporary fluctuations.[62] For instance, fluctuation in testosterone levels when a child is in distress has been found to be indicative of fathering styles. If a father's testosterone levels decrease in response to hearing their baby cry, it is an indication of empathizing with the baby. This is associated with increased nurturing behavior and better outcomes for the infant.[63]
That there is an association between depression and testosterone concentration seems possible because of the observation that depression may be associated with reduced testosterone concentrations, hypogonadal men may have their symptoms of depression relieved by TRT and that testosterone itself may have anti-depressant properties (Pope et al 2003). The evidence, however, is inconsistent. Seidman and colleagues (2002), for example, found that there was no relationship between testosterone and depression but there was an association of testosterone with dysthymia. McIntyre and colleagues (2006), on the other hand, found that middle-aged men with depression did have a reduction in bio-available testosterone.
Elevated testosterone levels have been demonstrated to increase the growth of body muscles and contribute to better activation of the nervous system, resulting in more power and strength, a better mood, enhanced libido, and many other benefits.[3] Previous researches done on the anabolic role of testosterone and its impact on muscular strength in training-induced adaptations has provided rather conflicting findings, and a positive correlation between testosterone-mediated responses and both functional performance and body composition was found.[4,5] There are a number of naturally occurring substances that can boost testosterone levels in the body. Foods containing such substances are known as testosterone-foods; and they tend to be rich in vitamins, antioxidants, and minerals like zinc, which plays a key role in testosterone production.[2,6-8]
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).

My question is in two parts, I am looking for energy and some muscle build but only do push ups and sit ups so not looking for massive results. I am diabetic and I am wanting to get a testosterone booster to have more energy for daily use not so much for help in the bedroom but I would not mind if it helps out. Would I be able to take it not just for a certain product but any testosterone booster? The other question is does it help with any form of muscle growth, again not anything big but some? I would appreciate any advice or information you can give me.


Dobs and colleagues found that men with an increased body mass index had both reduced testosterone and reduced high density lipoprotein (HDL) levels. Treatment with testosterone increased the levels of HDL (Dobs et al 2001). Rising levels of HDL are not a consistent finding with TRT. More often, however, one finds reduced total cholesterol, low density lipoprotein (LDL) cholesterol and triglyceride levels with TRT (Zgliczynski et al 1996; Whitsel et al 2001).
Welcome to the world's most comprehensive website on Herbal Supplements and natural health care. Since ages, ayurvedic herbal remedies have been used by our ancestors to cure common diseases. In recent years this alternative form of medicine has been gaining tremendous popularity. Herbal supplements made of medicinal plants, fruits and spices are usually less expensive and cause fewer reactions or side effects when compared to drugs and medications offered by pharmaceutical companies.
Common side effects from testosterone medication include acne, swelling, and breast enlargement in males.[10] Serious side effects may include liver toxicity, heart disease, and behavioral changes.[10] Women and children who are exposed may develop virilization.[10] It is recommended that individuals with prostate cancer not use the medication.[10] It can cause harm if used during pregnancy or breastfeeding.[10]
That said, a group of researchers at the National University of Malaysia did a systemic literature review of longjack, looking for clinical research that demonstrated a relationship between the shrub and testosterone levels. Of 150 articles, only 11 met their inclusion criteria — involving humans and scientifically rigorous. However, of those 11 studies, seven “revealed remarkable association” between using longjack and improving male sexual health, while the remaining four “failed to demonstrate sufficient effects.” The team concluded that longjack looks “promising” when it comes to raising low testosterone, and that there is convincing evidence that it works.
Using steroids eventually trains your body to realize that it doesn’t have to produce as much testosterone to reach its equilibrium, so to reach the same highs you’ll need to take more steroids, and when you stop taking them, your body will need to readjust — you’ll be living with low testosterone for a while (and you’ll need to see a doctor if your body doesn’t readjust on its own). Forcing your body to stay above your natural testosterone, even if you’re naturally low, can create this kind of dependency which ultimately decreases the amount of testosterone your body will produce on its own.
This being my initial use of product I do find an overall improvement in mind and body "maleness" related to focused goal and strength improvements. Has it turned me into a super stud..no, but at a recent 60th birthday, increased desire has added to performance and that is what I was looking for.I have reinstated diet and exercise that also has made physical and mental health achievements Will finish current bottle, and evaluate overall products worth once completed. Further evaluation pending...
Dr. Anthony’s Notes: Vitamin D has about 100 other beneficial body functions outside of it's impact on testosterone. Make sure you take the active Vitamin D3 (not D2 – from plant sources!) It’s also advisable to get 20 minutes of sunshine daily (weather permitting) – without sunscreen. Verdict: this is one of the natural testosterone supplements that work. Best Food Sources of Vitamin D3: Wild Alaskan Salmon (#1), Sardines, Eggs How To Take Vitamin D3: Using 3000-5000IU of Vitamin D3 per day is a good safe, research supported dose. Your physician can also test your blood for D3 levels for more precise monitoring.
Pregnant or nursing women who are exposed to EDCs can transfer these chemicals to their child. Exposure to EDCs during pregnancy affects the development of male fetuses. Fewer boys have been born in the United States and Japan in the last three decades. The more women are exposed to these hormone-disrupting substances, the greater the chance that their sons will have smaller genitals and incomplete testicular descent, leading to poor reproductive health in the long term. EDCs are also a threat to male fertility, as they contribute to testicular cancer and lower sperm count. All of these birth defects and abnormalities, collectively referred to as Testicular Dysgenesis Syndrome (TDS), are linked to the impaired production of testosterone.5
×