I’m afraid I have no super cool “secrets” to share and there are no easy shortcuts to increasing your T. If you were expecting some magical potion or supplement or weird body hack that will instantly and naturally increase your T levels, what follows is bound to disappoint. Despite what some companies or websites might tell you, there’s no single thing that will boost your testosterone naturally for the long term.
In 1927, the University of Chicago's Professor of Physiologic Chemistry, Fred C. Koch, established easy access to a large source of bovine testicles — the Chicago stockyards — and recruited students willing to endure the tedious work of extracting their isolates. In that year, Koch and his student, Lemuel McGee, derived 20 mg of a substance from a supply of 40 pounds of bovine testicles that, when administered to castrated roosters, pigs and rats, remasculinized them.[179] The group of Ernst Laqueur at the University of Amsterdam purified testosterone from bovine testicles in a similar manner in 1934, but isolation of the hormone from animal tissues in amounts permitting serious study in humans was not feasible until three European pharmaceutical giants—Schering (Berlin, Germany), Organon (Oss, Netherlands) and Ciba (Basel, Switzerland)—began full-scale steroid research and development programs in the 1930s.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
Testosterone insufficiency has been associated with HIV infection in men (Dobs et al 1988). Early reports suggested that testosterone therapy may have an ameliorating effect on both depression and decreased energy in HIV infected men, even if testosterone levels were not reduced (Rabkin et al 1999; Grinspoon et al 2000; Rabkin et al 2000). Both depression and fatigue, however, are common features of HIV-positive men and may be associated with factors other than reduced levels of testosterone. The disease itself may induce depression and fatigue may be a consequence of the disease, per se, or of some of the medications used to control HIV.
Xenoestrogen is a chemical that imitates estrogen in the human body. When men are exposed to too much of this estrogen-imitating chemical, T levels drop significantly. The problem is xenoestrogen is freaking everywhere — plastics, shampoos, gasoline, cows, toothpaste. You name it and chances are there are xenoestrogen in it. The ubiquitous nature of this chemical in our modern world is one reason some endocrinologists believe that testosterone levels are lower in men today than in decades past. It’s also a reason doctors say the number of boys born with hypospadias — a birth defect in which the opening of the urethra is on the underside of the penis and not at the tip — has doubled.  Note to expecting parents: make sure mom stays away from xenoestrogens during the pregnancy.
Researchers found that the simple act ‘expressing power through open, expansive postures’ (i.e. standing up straight and proud) can increase Testosterone and decrease cortisol (58), along with improving feelings of power and tolerance for risk. Easy! Your mother was right – don’t slouch. This could be a handy trick before making a speech or going on a date!
"Some say it's just a part of aging, but that's a misconception," says Jason Hedges, MD, PhD, a urologist at Oregon Health and Science University in Portland. A gradual decline in testosterone can't explain a near-total lack of interest in sex, for example. And for Hedges' patients who are in their 20s, 30s, and early 40s and having erectile problems, other health problems may be a bigger issue than aging.
Christopher Walker is a co-founder of UMZU and creator of the Thermo Diet. He is the first person to get a Duke Neuroscience degree in 3 years. After naturally solving his own health complications with a brain tumor as a teenager, he has devoted his life to creating all-natural products and education to help men, women, children and pets to improve their own health naturally using science-backed research.

Two of the immediate metabolites of testosterone, 5α-DHT and estradiol, are biologically important and can be formed both in the liver and in extrahepatic tissues.[151] Approximately 5 to 7% of testosterone is converted by 5α-reductase into 5α-DHT, with circulating levels of 5α-DHT about 10% of those of testosterone, and approximately 0.3% of testosterone is converted into estradiol by aromatase.[2][151][157][158] 5α-Reductase is highly expressed in the male reproductive organs (including the prostate gland, seminal vesicles, and epididymides),[159] skin, hair follicles, and brain[160] and aromatase is highly expressed in adipose tissue, bone, and the brain.[161][162] As much as 90% of testosterone is converted into 5α-DHT in so-called androgenic tissues with high 5α-reductase expression,[152] and due to the several-fold greater potency of 5α-DHT as an AR agonist relative to testosterone,[163] it has been estimated that the effects of testosterone are potentiated 2- to 3-fold in such tissues.[164]
Fatherhood decreases testosterone levels in men, suggesting that the emotions and behavior tied to decreased testosterone promote paternal care. In humans and other species that utilize allomaternal care, paternal investment in offspring is beneficial to said offspring's survival because it allows the parental dyad to raise multiple children simultaneously. This increases the reproductive fitness of the parents, because their offspring are more likely to survive and reproduce. Paternal care increases offspring survival due to increased access to higher quality food and reduced physical and immunological threats.[60] This is particularly beneficial for humans since offspring are dependent on parents for extended periods of time and mothers have relatively short inter-birth intervals.[61] While extent of paternal care varies between cultures, higher investment in direct child care has been seen to be correlated with lower average testosterone levels as well as temporary fluctuations.[62] For instance, fluctuation in testosterone levels when a child is in distress has been found to be indicative of fathering styles. If a father's testosterone levels decrease in response to hearing their baby cry, it is an indication of empathizing with the baby. This is associated with increased nurturing behavior and better outcomes for the infant.[63]
If a young man's low testosterone is a problem for a couple trying to get pregnant, gonadotropin injections may be an option in some cases. These are hormones that signal the body to produce more testosterone. This may increase the sperm count. Hedges also describes implantable testosterone pellets, a relatively new form of treatment in which several pellets are placed under the skin of the buttocks, where they release testosterone over the course of about three to four months. Injections and nasal gels may be other options for some men.