At the present time, it is suggested that androgen replacement should take the form of natural testosterone. Some of the effects of testosterone are mediated after conversion to estrogen or dihydrotestosterone by the enzymes aromatase and 5a-reductase enzymes respectively. Other effects occur independently of the traditional action of testosterone via the classical androgen receptor- for example, its action as a vasodilator via a cell membrane action as described previously. It is therefore important that the androgen used to treat hypogonadism is amenable to the action of these metabolizing enzymes and can also mediate the non-androgen receptor actions of testosterone. Use of natural testosterone ensures this and reduces the chance of non-testosterone mediated adverse effects. There are now a number of testosterone preparations which can meet these recommendations and the main factor in deciding between them is patient choice.
In non-human primates, it may be that testosterone in puberty stimulates sexual arousal, which allows the primate to increasingly seek out sexual experiences with females and thus creates a sexual preference for females.[39] Some research has also indicated that if testosterone is eliminated in an adult male human or other adult male primate's system, its sexual motivation decreases, but there is no corresponding decrease in ability to engage in sexual activity (mounting, ejaculating, etc.).[39]

A related issue is the potential use of testosterone as a coronary vasodilator and anti-anginal agent. Testosterone has been shown to act as a vasodilator of coronary arteries at physiological concentrations during angiography (Webb, McNeill et al 1999). Furthermore men given a testosterone injection prior to exercise testing showed improved performance, as assessed by ST changes compared to placebo (Rosano et al 1999; Webb, Adamson et al 1999). Administration of one to three months of testosterone treatment has also been shown to improve symptoms of angina and exercise test performance (Wu and Weng 1993; English et al 2000; Malkin, Pugh, Morris et al 2004). Longer term studies are underway. It is thought that testosterone improves angina due its vasodilatory action, which occurs independently of the androgen receptor, via blockade of L-type calcium channels at the cell membrane of the vascular smooth muscle in an action similar to the dihydropyridine calcium-channel blockers such as nifedipine (Hall et al 2006).
show that total testosterone levels increase after exercising, especially after resistance training. Low testosterone levels can affect your sex drive and your mood. The good news is that exercise improves mood and stimulates brain chemicals to help you feel happier and more confident. Exercise also boosts energy and endurance, and helps you to sleep better. Fitness experts recommend 30 minutes of exercise every day.
Trials of testosterone treatment in men with type 2 diabetes have also taken place. A recent randomized controlled crossover trial assessed the effects of intramuscular testosterone replacement to achieve levels within the physiological range, compared with placebo injections in 24 men with diabetes, hypogonadism and a mean age of 64 years (Kapoor et al 2006). Ten of these men were insulin treated. Testosterone treatment led to a significant reduction in glycated hemoglobin (HbA1C) and fasting glucose compared to placebo. Testosterone also produced a significant reduction in insulin resistance, measured by the homeostatic model assessment (HOMA), in the fourteen non-insulin treated patients. It is not possible to measure insulin resistance in patients treated with insulin but five out of ten of these patients had a reduction of insulin dose during the study. Other significant changes during testosterone treatment in this trial were reduced total cholesterol, waist circumference and waist-hip ratio. Similarly, a placebo-controlled but non-blinded trial in 24 men with visceral obesity, diabetes, hypogonadism and mean age 57 years found that three months of oral testosterone treatment led to significant reductions in HbA1C, fasting glucose, post-prandial glucose, weight, fat mass and waist-hip ratio (Boyanov et al 2003). In contrast, an uncontrolled study of 150 mg intramuscular testosterone given to 10 patients, average age 64 years, with diabetes and hypogonadism found no significant change in diabetes control, fasting glucose or insulin levels (Corrales et al 2004). Another uncontrolled study showed no beneficial effect of testosterone treatment on insulin resistance, measured by HOMA and ‘minimal model’ of area under acute insulin response curves, in 11 patients with type 2 diabetes aged between 33 and 73 years (Lee et al 2005). Body mass index was within the normal range in this population and there was no change in waist-hip ratio or weight during testosterone treatment. Baseline testosterone levels were in the low-normal range and patients received a relatively small dose of 100 mg intramuscular testosterone every three weeks. A good increase in testosterone levels during the trial is described but it is not stated at which time during the three week cycle the testosterone levels were tested, so the lack of response could reflect an insufficient overall testosterone dose in the trial period.

A recent study compared total and bioavailable testosterone levels with inflammatory cytokines in men aged 65 and over. There was an inverse correlation with the pro-inflammatory soluble interleukin-6 receptor, but no association with interleukin-6 (IL-6), highly sensitive CRP (hsCRP), tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β (Maggio et al 2006). Another trial found that young men with idiopathic hypogonadotrophic hypogonadism had higher levels of proinflammatory factors interleukin-2 (IL-2), interleukin-4 (IL-4), complement C3c and total immunoglobulin in comparison to controls (Yesilova et al 2000). Testosterone treatment in a group of hypogonadal men, mostly with known coronary artery disease, induced anti-inflammatory changes in the cytokine profile of reduced IL-1β and TNF-α and increased IL-10 (Malkin, Pugh, Jones et al 2004).
This causes your body to burn fat for the next 36 hours to replace your body’s vital energy stores. It addition to increasing your T-levels, it can help burn between 3–9 times more fat, lower your resting heart rate, lower blood pressure, keep your brain young by increasing circulation, and aids in detoxification by stimulating the lymphatic system.
There is no definite age to recommend when is appropriate to start using a Testosterone Booster. It depends on the age in which you initially hit puberty, and how long your body produces testosterone at its peak level. If you feel as though your Testosterone levels have started to decline, usually characterised through a decrease in strength, energy, libido and ability to build size, then these are usually good determinants that it may be time to commence using a Natural Testosterone booster. The Typical age range is between 21- 25, however this is highly variable depending on your own genetics, training and diet.

In fact, testosterone supplements might cause more problems than they solve. Studies have suggested a connection between supplements and heart problems. A 2010 study reported in The New England Journal of Medicine showed that some men over age 65 had an increase in heart problems when they used testosterone gel. A later of men younger than 65 at risk for heart problems and heart-healthy older men showed that both groups had a greater risk of heart attack when taking testosterone supplements.


But when a premenopausal woman’s testosterone levels are too high, it can lead to polycystic ovary syndrome (PCOS), a condition that increases the risk of irregular or absent menstrual cycles, infertility, excess hair growth, skin problems, and miscarriage. High levels of testosterone in women, whether caused by PCOS or by another condition, can cause serious health conditions such as insulin resistance, diabetes, high cholesterol, high blood pressure, and heart disease. (12)
Saw palmetto: Uses, dosage, and side effects Saw palmetto is an extract from the berries of a type of palm tree. The berries have traditionally been used to ease urinary and reproductive problems. The extract is now used in herbal remedies to stabilize testosterone. Learn about its use, its effectiveness, the science behind the claims, and any side effects. Read now
×